Effect of a Blocking Layer on the Decrease in the Leakage Current in Organic Bistable Devices

2013 ◽  
Vol 13 (9) ◽  
pp. 6463-6466
Author(s):  
Chan Ho Yoo ◽  
Seong Hoon Ko ◽  
Tae Whan Kim
2020 ◽  
Vol 167 (8) ◽  
pp. 084515
Author(s):  
Yoshio Matsuzaki ◽  
Yuya Tachikawa ◽  
Yoshitaka Baba ◽  
Koki Sato ◽  
Gen Kojo ◽  
...  

2011 ◽  
Vol 679-680 ◽  
pp. 555-558 ◽  
Author(s):  
Konstantin Vassilevski ◽  
Irina P. Nikitina ◽  
Alton B. Horsfall ◽  
Nicolas G. Wright ◽  
C. Mark Johnson

3.3 kV rated 4H-SiC diodes with nickel monosilicide Schottky contacts and 2-zone JTE regions were fabricated on commercial epitaxial wafers having a 34 m thick blocking layer with donor concentration of 2.2×1015 cm-3. The diodes were fabricated with and without additional field stop rings to investigate the impact of practically realizable stopper rings on the diode blocking characteristics. The field stop ring was formed by reactive ion etching of heavily doped epitaxial capping layer. The diodes with field stop rings demonstrated significantly higher yield and reduction of reverse leakage current. The diodes demonstrated blocking voltages in excess of 4.0 kV and very low change of leakage current at ambient temperatures up to 200 °C.


RSC Advances ◽  
2019 ◽  
Vol 9 (51) ◽  
pp. 29993-29997
Author(s):  
Chan Hyuk Ji ◽  
Ji Young Lee ◽  
Kee Tae Kim ◽  
Se Young Oh

To achieve high detectivity of organic photodetectors (OPDs), we investigated hafnium oxide (HfO2) as an electron blocking layer in an attempt to obtain a low leakage current and high photocurrent by the tunneling effect.


2017 ◽  
Vol 137 (8) ◽  
pp. 481-486
Author(s):  
Junichi Hayasaka ◽  
Kiwamu Shirakawa ◽  
Nobukiyo Kobayashi ◽  
Kenichi Arai ◽  
Nobuaki Otake ◽  
...  

2010 ◽  
Vol 130 (11) ◽  
pp. 1037-1041 ◽  
Author(s):  
Takuma Miyake ◽  
Yuya Seo ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo
Keyword(s):  

2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Sign in / Sign up

Export Citation Format

Share Document