Pore Structure Characterization of Tailing Bed and Dewatering Mechanism at nm-µm Scales Under Shearing

2021 ◽  
Vol 21 (1) ◽  
pp. 354-361
Author(s):  
Hua-Zhe Jiao ◽  
Shu-Fei Wang ◽  
Tian-Rang Jia ◽  
Yi-Wen Ju

The preparation of high-density tailings is a prerequisite for cemented paste backfill technology, and the flocculated fine tailings of sealed water leads to challenges in the slurry thickening of tailings. Shearing conditions can compact the micro floc structure to improve the underflow concentration. The nm-μm scales of pore characteristics and connectivity are essential for the dewatering process. The computed tomography (CT) results show that the underflow concentration increases from 62.3 wt% to 68.6 wt% after undergoing rake shearing at 2 rpm, and the porosity decreases from 42.7% to 35.54%. The shearing conditions reduces the spheres and sticks by 43.14% and 43.3%, respectively, from the pore network model (PNM). The seepage flow states were affected by the changes in the pore structure. The maximum surface velocity and the maximum internal pressure decrease after undergoing shearing. Shearing conditions can break the micro floc structures, and the fine particles can fill in the micron-scale pores by gravity and shearing conditions, resulting in the forced drainage of water into the pores. Shearing conditions can break the thickening floc network structures; natural fine particles can fill the micron-scale pores by gravity and shearing conditions. The upward seepage of sealed water along the μm-scale pore channel causes a higher bed concentration. However, the sealed water in the nm-scale pores cannot flow upward due to water cohesion and particle adhesion resistance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Chao Huan ◽  
Chao Zhu ◽  
Lang Liu ◽  
Mei Wang ◽  
Yujiao Zhao ◽  
...  

The development of cemented paste backfilling (CPB) technology has made an important contribution to the mining economy. As a kind of porous material, the pore structure characteristic of cemented paste backfill (CPB) is strongly correlated to its mechanical properties. In this study, CPB specimens were prepared with tailings/cement ratios (T/C ratio) of 4, 6, 10 and curing durations of 3, 7, 14, and 28 days, respectively. Pore structures characteristics of CPB specimens were investigated using nuclear magnetic resonance (NMR) and scanning electronic microscopy (SEM). The uniaxial compressive strength (UCS) was adopted to illustrate the mechanical property of CPB specimens. The coupling effects of T/C ratio and curing time on the pore characteristics of CPB as well as the effect of pore size on the UCS were analyzed. The results indicated that: 1) the microstructural integrity of CPB was highly related to the development status of the pore structure, which can be represented by micro-parameters like porosity, average pore area, etc. 2) a similar normal distribution curve was observed from the four kinds of pore structure in CPB. As the curing time increased, the peak of the pore size curve shifted left, and the peak value decreased, which means that the pore size in CPB decreased and became much concentrated; 3) the extension of the most probable pore size led to the cross-connection of pores and resulted in the fracture of CPB, which was shown as a crack on the main section.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2678 ◽  
Author(s):  
Wei Yu ◽  
Xu Liang ◽  
Frank Mi-Way Ni ◽  
Abimbola Grace Oyeyi ◽  
Susan Tighe

This study investigated the pore structure and its effects on mechanical properties of lightweight cellular concrete (LCC) in order to understand more and detailed characteristics of such structure. As part of investigation, environment scanning electron microscopes (ESEM) and industrial high-definition (HD) macro photography camera were separately used to capture and compare images of specimens. Physical properties of the pore structure, including pore area, size, perimeter, fit ellipse, and shape descriptors, were studied based on the image processing technology and software applications. Specimens with three different densities (400, 475, and 600 kg/m3) were prepared in the laboratory. Firstly, the effects of density on the characteristics of pore structure were investigated; furthermore, mechanical properties (compressive strength, modulus of elasticity and Poisson’s ratio, flexural strength and splitting tensile strength of LCC) were tested. The relationships among pore characteristics, density, and mechanical properties were analyzed. Based on the results obtained from the lab test—comparisons made between specimens with high-densities and those with low-densities—it was found significant variability in bubble size, thickness, and irregularity of pores. Furthermore, the increase of density is accompanied by better mechanical properties, and the main influencing factors are the thickness of the solid part and the shape of the bubble. The thicker of solid part and more regular pores of LCC has, the better mechanical properties are.


Author(s):  
Yuxiang Zhang ◽  
Shenglai Yang ◽  
Zheng Zhang ◽  
Qian Li ◽  
Hui Deng ◽  
...  

2012 ◽  
Vol 42 (1) ◽  
pp. 194-204 ◽  
Author(s):  
Qiang Zeng ◽  
Kefei Li ◽  
Teddy Fen-chong ◽  
Patrick Dangla

Fuel ◽  
2018 ◽  
Vol 234 ◽  
pp. 626-642 ◽  
Author(s):  
Yiwen Ju ◽  
Ying Sun ◽  
Jingqiang Tan ◽  
Hongling Bu ◽  
Kui Han ◽  
...  

2021 ◽  
Vol 60 (36) ◽  
pp. 13253-13264
Author(s):  
Neil Robinson ◽  
Razyq Nasharuddin ◽  
Ganhua Luo ◽  
Andy Fourie ◽  
Einar O. Fridjonsson ◽  
...  

2021 ◽  
pp. 105382
Author(s):  
Juncheng Qiao ◽  
Jianhui Zeng ◽  
Dongxia Chen ◽  
Jianchao Cai ◽  
Shu Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document