Methyl Orange Adsorption onto Magnetic Fe3O4/Carbon (AC, GO, PGO) Nanocomposites

2021 ◽  
Vol 21 (11) ◽  
pp. 5756-5764
Author(s):  
Glemarie C. Hermosa ◽  
Chien-Shiun Liao ◽  
Sea-Fue Wang ◽  
Aidan An-Cheng Sun

In this study, carbonaceous nanomaterials (Activated Carbon (AC), Graphene Oxide (GO) and Porous Graphene Oxide (PGO)) were synthesized and attached to Fe3O4 magnetic powder for the effective removal of synthetic Methyl Orange (MO). AC and GO were successfully conjugated with Fe3O4 whilst PGO was not due to its surface functional groups. The morphology and chemical structure of the Fe3O4/Carbon nanocomposites were characterized by the N2 adsorption, Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). Batch adsorption experiments were performed and showed significant removal efficiency of 90% at the first ten minutes for Fe3O4/AC nanocomposite. Analysis of adsorption equilibrium revealed that AC/Fe3O4 is well fitted with Langmuir model, a homogeneous adsorption having an adsorption capacity of 270 mg/g. The GO/Fe3O4 can fit with both Langmuir and Freundlich models indicating multilayer adsorption on the surface of the adsorbent with an adsorption capacity of 81.9 mg/g. In the case of adsorption kinetics, both adsorbents follow the pseudo second order kinetics model showing high F?2 values. Both adsorbents demonstrated advantageous superparamagnetic properties for their easy recovery from aqueous solutions and prospective applications to toxic removal in water and wastewater.

Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Muhammad Afzal Kamboh ◽  
Hamid Rashidi Nodeh ◽  
Sharifah Mohamad

The present investigation highlights the synthesis of polyaniline (PANI) coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in-situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB) and the anionic dye methyl orange (MO). The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies of graphene oxide (GO), PANI homopolymer and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt% SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO respectively, in a very short duration of time.


2009 ◽  
Vol 79-82 ◽  
pp. 1719-1722
Author(s):  
Zhi Hong Zhang ◽  
Shao Yu Zhang ◽  
Xue Dong Liu

Attapulgite clay(ATP) from Xuyi county of China was purified by a wet method then treated with NaOH and 1.0 mol/L, 2.0 mol/L and 3.0 mol/L solutions of HCl. Transmission electron microscope(TEM) and X-ray diffraction (XRD) were used to characterize treated ATP. Results showed that wet purification could remove most of impurities. Treatment by alkaline and HCl of 1.0 mol/L and 2.0 mol/L could increase purity while treatment of 3.0 mol/L hydrochloric acid could dissolve some element of ATP so much as form SiO2 and destroy fiber structure to clips. Adsorption experiments of Fe3+ and Ni2+ from aqueous solutions were done using original ATP, purified ATP and treated ATP as absorbents. Results showed that Attapulgite could adsorb metal cations in significant amounts. Sodium hydroxide activation had little influence on adsorption capacity. Influences of acid treatments to ATP on adsorption capacity varied on different concentration solutions.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5047
Author(s):  
Jun Cao ◽  
Peng Wang ◽  
Jie Shen ◽  
Qi Sun

Here, using Fe3O4@SiO2 as a precursor, a novel core-shell structure magnetic Cu2+ adsorbent (Fe3O4@zeolite NaA) was successfully prepared. Several methods, namely X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Transmission electron microscope (TEM), Brunauer Emmett Teller (BET) and vibrating sample magnetometry (VSM) were used to characterize the adsorbent. A batch experiment was conducted to study the Cu2+ adsorption capacity of Fe3O4@zeolite NaA at different pH values, contact time, initial Cu2+ concentration and adsorbent does. It is found that the saturated adsorption capacity of Fe3O4@zeolite NaA on Cu2+ is 86.54 mg/g. The adsorption isotherm analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is more consistent with the Langmuir model, suggesting that it is a monolayer adsorption. Adsorption kinetics study found that the adsorption process of Fe3O4@zeolite NaA to Cu2+ follows the pseudo-second kinetics model, which means that the combination of Fe3O4@zeolite NaA and Cu2+ is the chemical chelating reaction. Thermodynamic analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is endothermic, with increasing entropy and spontaneous in nature. The above results show that Fe3O4@zeolite NaA is a promising Cu2+ adsorbent.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2021 ◽  
Vol 33 (3) ◽  
pp. 671-676
Author(s):  
B.R.S. Rathore ◽  
N.P.S. Chauhan ◽  
M.K. Rawal ◽  
S.C. Ameta ◽  
R. Ameta

An ecofriendly polymer composite based on chitosan, polyaniline and manganese dioxide has been prepared using batch adsorption method and analyzed by Fourier transform infrared (FTIR), UV-vis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). FTIR results suggested the presence of functional groups like hydroxyl and amino groups and also shown a significant shift in IR bands in CS-PANI-MnO2 composite. The surface of composite was quite rough within the folds of pleated regions as observed from the SEM and TEM morphologies. The prepared composite was also utilized as an adsorbent for the treatment of methyl orange from the aqueous solution and achieved a reasonably good adsorption capacity of 96.2%. The biochemical oxygen demand (BOD) and chemical oxygen demand (COD) tests also suggested their suitability for the adsorption of methyl orange dye.


Author(s):  
Hao Zhu ◽  
Haiming Zou

Abstract In this work, Spirulina residue was used as the raw material to prepare different biochars by changing the pyrolysis time. Moreover, the obtained products were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction energy spectrum. This experiment used the batch adsorption method to study the adsorption effect of pH, dosage, and pyrolysis time on methyl orange. The adsorption of methyl orange onto Spirulina residue biochar fitted with the Langmuir isotherm model and pseudo-second-order kinetics. The results showed that the surface functional groups of Spirulina residue biochar obtained by dry pyrolysis were abundant, and it can effectively adsorb methyl orange dye in an aqueous solution. The sample prepared at 500 °C for 5 h had the best adsorption effect on methyl orange. The change of pyrolysis time will affect the physicochemical properties of biochar from Spirulina residue, thereby affecting its adsorption effect on methyl orange dye. The analysis showed that the chemical adsorption of Spirulina residue biochar on methyl orange might be the primary way of dye removal. The results can provide a reference for preparing biochar from algae residue and biochar application in the removal of dye wastewater.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2094152
Author(s):  
Liqi Liu ◽  
Xiaofeng Guo ◽  
Lei Shi ◽  
Liquan Chen ◽  
Fangzhou Zhang ◽  
...  

Corrosion to metal is a great challenge to major industries. Anticorrosive coatings can effectively prevent metal corrosion. In this study, we propose a novel method to prepare silica nanoparticles-covered graphene oxide (SiO2-GO) nanohybrids and anticorrosion SiO2-GO/waterborne polyurethane acrylic (WPUA) coatings. Firstly, we obtained silane-functionalized graphene oxide (A-GO) via a simple covalent functionalization of graphene oxide (GO) with 3-aminopropyltriethoxysilane. Secondly, SiO2-GO was synthesized by a simple sol–gel method with tetraethoxysilane in water–alcohol solution. Finally, the obtained SiO2-GO nanofillers were added into WPUA to prepare SiO2-GO/WPUA coatings. GO, A-GO, and SiO2-GO nanohybrids could be confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, and transmission electron microscope. SiO2-GO nanohybrids showed small size compared with the unfunctionalized GO. Meanwhile, GO, A-GO, and SiO2-GO nanofillers were added into WPUA. The electrochemical impedance spectroscopy and field emission scanning electron microscope indicate that SiO2-GO nanohybrids can be homogeneously dispersed in the WPUA coatings at 0.4% loading level and the SiO2-GO/WPUA film exhibits excellent anticorrosion performance. SiO2-GO nanoparticles can effectively utilize in the area of anticorrosive nanofiller industry. This study provides a convenient method of anticorrosive coating production.


2014 ◽  
Vol 70 (5) ◽  
pp. 851-857 ◽  
Author(s):  
Hongxi Liu ◽  
Ting Wu ◽  
Zhimin Wu ◽  
Yong Zhang ◽  
Keqin Xuan ◽  
...  

Graphene oxide (GO) was chemically modified with poly(ethylene imine) (PEI) to improve its colloidal stability and was investigated as a potential adsorbent for the removal of methyl orange (MO). The synthesis of PEI-GO was verified with a Fourier transform infrared spectrometer and thermogravimetric analysis. A series of adsorption experiments were carried out to investigate the adsorption capacity of PEI-GO. Adsorption kinetics and thermodynamics studies were performed, and the thermodynamic parameters were calculated. The results showed that PEI could improve the colloidal stability of GO in aqueous solution, and the obtained PEI-GO showed a macroscopically homogeneous dispersion after more than three months. After standing for 90 days, the Brunauer–Emmett–Teller specific surface area of GO decreased from 353 to 214 m2 · g−1, while that of PEI-GO remained almost unchanged (from 432 to 413 m2 · g−1). The PEI-GO exhibited significantly faster kinetic and higher adsorption capacity for MO than GO. Moreover, PEI-GO had a good adsorption capacity in the acidic range, and the highest adsorption of MO occurred at pH = 6.0. The adsorption of MO on PEI-GO was an endothermic, spontaneous and physisorption process.


2021 ◽  
Author(s):  
Adeel Mustafa ◽  
Nazia Yaqoob ◽  
Maheen Almas ◽  
Shagufta Kamal ◽  
Khalid Mahmood Zia ◽  
...  

Abstract In this study graphene oxide (GO) reinforced polyvinyl alcohol (PVA) composites hydrogels were synthesized and used as efficient adsorbents for Drimarene Brilliant Blue K-4BL. GO nanoparticles (NPs) were synthesized by modified Hummer’s method. The composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric analysis (TGA), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed homogeneous dispersion of reinforcement in the synthesized composites. Moreover thermal stability of the composites was significantly enhanced by the addition of graphene oxide nanoparticles. The synthesized composites were used for the removal of Drimarene brilliant Blue from model waste water. The effect of pH, content of GONPs and initial concentration of Drimarene Brilliant Blue K-4BL on the adsorption capacity of synthesized GO/PVA composites were investigated. The equilibrium isothermal data were studied by applying Langmuir and Freundlich isotherm models. Results demonstrated that the adsorption process is well described by the Langmuir adsorption isotherm. According to the Langmuir model, maximum adsorption capacity i.e. 32mg/g was obtained at 0.7% GO/PVA composite. From the kinetic study it was concluded that pseudo-second-order model is the best fitted. Synthesized composites showed excellent reusability (almost 95 %) for the adsorption of Drimarene Brilliant Blue K-4BL after four successive cycles of adsorption and desorption. Thus, the GO/PVA composites demonstrated a great potential in terms of cost effectiveness, efficiency and reusability for the removal of Drimarene Brilliant Blue K-4BL dye.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1580
Author(s):  
Franklin Gordon-Nuñez ◽  
Katherine Vaca-Escobar ◽  
Milton Villacís-García ◽  
Lenys Fernández ◽  
Alexis Debut ◽  
...  

Lead ion in drinking water is one of the most dangerous metals. It affects several systems, such as the nervous, gastrointestinal, reproductive, renal, and cardiovascular systems. Adsorption process is used as a technology that can solve this problem through suitable composites. The adsorption of lead (Pb(II)) on graphene oxide (GO) and on two goethite (α-FeOOH)/reduced graphene oxide (rGO) composites (composite 1: 0.10 g GO: 22.22 g α-FeOOH and composite 2: 0.10 g GO: 5.56 g α-FeOOH), in aqueous medium, was studied. The GO was synthesized from a commercial pencil lead. Composites 1 and 2 were prepared from GO and ferrous sulfate. The GO and both composites were characterized by using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), Raman spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The adsorption capacity of Pb(II) on the GO and both composites was evaluated through adsorption isotherms. Composite 1 presented a significant agglomeration of α-FeOOH nanorods on the reduced graphene oxide layers. Meanwhile, composite 2 exhibited a more uniform distribution of nanorods. The adsorption of Pb(II) on the three adsorbents fits the Langmuir isotherm, with an adsorption capacity of 277.78 mg/g for composite 2200 mg/g for GO and 138.89 mg/g for composite 1. Composite 2 emerged as a highly efficient alternative to purify water contaminated with Pb(II).


Sign in / Sign up

Export Citation Format

Share Document