Study of atmospheric ice adhesion properties of superhydrophobic surface by in-situ shear system

2020 ◽  
Vol 10 (10) ◽  
pp. 1704-1710
Author(s):  
Yan Liu ◽  
Naiyuan Xi ◽  
Xiangning Zhang ◽  
Nan Liu

Based on shear strength calculation, this paper established an accurate method to measure the ice adhesion strength on any solid surface in an environment chamber by using self-made experimental equipment. The inherent characteristics of material and external environment which have strong influence on ice adhesion strength were investigated. The mechanism of ice adhesion was interpreted by studying the adhesion strength of ice layer with different surface wettability. The smooth steel substrate without any treatment and superhydrophobic surface samples were selected to study the relationship between ice adhesion strength and surface temperature. Meanwhile, the ice peak adhesion strength of the surface after freezing for 20–360 min under different low temperatures was analyzed. The results showed that the equipment provides a scientific and reasonable approach for the researchers to characterize the anti-icing performance of surfaces with different wettability.

2019 ◽  
Vol 29 (6) ◽  
pp. 378-384 ◽  
Author(s):  
Hui Jae Cho ◽  
◽  
You Sub Kim ◽  
Yong Chan Jung ◽  
Soo Yeol Lee

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3658
Author(s):  
Auezhan Amanov ◽  
Joo-Hyun Choi ◽  
Young-Sik Pyun

In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the tribological properties and scratch-induced adhesion behavior of a heat-resistant KHR 45A steel cracking tube, which is used for the pyrolysis process, were investigated. The main objective of this study is to investigate the effects of pre- and post-carburizing UNSM treatment on the tribological and adhesion performances of carburized domestic KHR 45A (A) steel and to compare the results with the existing carburized Kubota-made KHR 45A steel (B). A carburizing process was carried out on the polished and UNSM-treated KHR 45A steel substrates, which were cut out from the cracking tube, at 300 °C heat exposure for 300 h. The thickness of the carburizing layer was about 10 μm. UNSM technology was applied as pre- and post-carburizing surface treatment; both reduced the friction coefficient and wear rate compared to that of the carburized KHR 45A steel substrate. It was also found that the application of UNSM technology increased the critical load, which implies the improvement of adhesion behavior between the carburizing layer and the KHR steel substrate. The application of UNSM technology as pre- and post-carburizing surface treatment could help replace carburized Kubota-made KHR 45A steel (B) thanks to the improved tribological performance, enhanced scratch resistance, load bearing capacity, and adhesion of domestic KHR 45A (A) steel.


Ice Adhesion ◽  
2020 ◽  
pp. 237-284
Author(s):  
Alexandre Laroche ◽  
Maria Jose Grasso ◽  
Ali Dolatabadi ◽  
Elmar Bonaccurso

2008 ◽  
Vol 373-374 ◽  
pp. 304-307
Author(s):  
Sen Yang ◽  
Ming Run Wang ◽  
Tao Gong ◽  
Wen Jin Liu

In order to improve wear resistance of carbon steel, laser cladding experiments were carried out using a 3kW continuous wave CO2 laser. The diameter of the laser beam was 3-5mm, the scanning velocity was 3-10mm/s, and the laser output power was 1.0-1.3kW. The experimental results showed that MoSi2/SiCP composites coating could be in-situ synthesized from mixture powders of molybdenum, silicon and SiC by laser cladding. A good metallurgical bond between the coating and the substrate could be achieved. The microstructures of the coating were mainly composed of MoSi2, SiC and FeSiMo phases. The average microhardness of the coating was about HV0.21300, about 6.0 times larger than that of steel substrate.


2017 ◽  
Vol 864 ◽  
pp. 121-126 ◽  
Author(s):  
Farag I. Haider ◽  
Suryanto ◽  
Mohd Hanafi Ani ◽  
M.H. Mahmood

In this paper, response surface methodology (RSM) was utilized for the experiment design of CuSO4 and H2SO4 concentrations and current densities. RSM was also used to evaluate the significance of each parameter and its interaction on the adhesion strength of austenitic stainless steel substrate. Adhesion strength was investigated by a Teer ST-30 tester, and the structure of the samples investigated by using scanning electron microscopy (SEM). Results showed that increasing the concentration of CuSO4 and decreasing theat of H2SO4 strengthens adhesion. Conversely, the current density only has a slight effect.


2016 ◽  
Vol 299 ◽  
pp. 135-142 ◽  
Author(s):  
Xiaolong Cai ◽  
Yunhua Xu ◽  
Nana Zhao ◽  
Lisheng Zhong ◽  
Ziyuan Zhao ◽  
...  

2008 ◽  
Vol 35 (5) ◽  
pp. 454-460 ◽  
Author(s):  
Krzysztof Zieliński

This article describes the effect of heat aging and styrene–butadiene–styrene (SBS) content in bitumen on the adhesion properties of mastics (bitumen-filler mix) to concrete and steel substrates. Test results showed that the adhesion strength of bituminous mastics to concrete and steel substrates decreased as the SBS content increased. Bitumen types modified with 9%–12% of SBS, commonly used in waterproofing materials, showed an approximately three times weaker bond with concrete and steel substrates than the nonmodified equivalents. Results also showed that after heat aging, the adhesion strength of the nonmodified bitumen was always higher than that of the unheated bitumen modified with 9%–12% of SBS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Selda Sert ◽  
Nilgün Kızılcan

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with olive pomace (OP) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly OP modified cyclohexanone composite resins (OPCFCR) with a one-step method that has higher condensation reaction temperature than CFR. The water absorption properties, gloss value and cross-cut adhesion properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37% aqueous solution) and tannin were mixed and 20% aqueous NaOH solution was added to produce the resin. OP has environmentally friendly bio-based lignin, cellulose and phenolic compounds and the OP structure has been incorporated into the structure of the CFR resin during the in situ modification, such as resole resin and polysaccharide. The weights of pomace were used as 5% and 10% of the weight of cyclohexanone in cyclohexanone-formaldehyde composite resins, respectively. Findings There is an improvement in the properties of the OPCFCR produced from an agricultural waste that is very abundant in Gulf of Edremit region of Balikesir. The OPCFCRs were soluble in common organic solvents. The product OPCFCR has a dark red-brown color. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37% formalin was added dropwise in total while refluxing. The amount of aqueous NaOH solution is limited as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-insoluble resin is obtained. Practical implications This study provides the application of ketonic resins. The OPCFCR containing phenolic groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. OP, with a large amount of catechol groups, was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value OPCFCR has been synthesized in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.


Sign in / Sign up

Export Citation Format

Share Document