High-Performance AlGaN/GaN Enhancement-Mode High Electron Mobility Transistor by Two-Step Gate Recess and Electroless-Plating Approaches

2021 ◽  
Vol 13 (1) ◽  
pp. 30-35
Author(s):  
Ching-Hong Chang ◽  
Yue-Chang Lin ◽  
Jing-Shiuan Niu ◽  
Wen-Shiung Lour ◽  
Jung-Hui Tsai ◽  
...  

In this work, an AlGaN/GaN enhancement-mode high electron mobility transistor (HEMT) with two-step gate recess and electroless plating (EP) approaches is reported. Scanning electron microscopy and atomic force microscopy surface analysis are used to analysis the related properties of the EP-gate structure. A positive threshold voltage Vthof 0.68 V is obtained for the enhancement-mode EP-HEMT. In addition, a traditional HEMT based on thermal-evaporation gate is compared for the demonstration of the studied EP-HEMT with the improved performance, such as a higher maximum drain saturation current of 228.9 mA/mm, a higher maximum transconductance of 107.2 mS/mm, a lower gate leakage current of 1.2 × 10–7 mA/mm, and a higher ON/OFF drain current ratio of 4.57 × 105.

2014 ◽  
Vol 11 (3-4) ◽  
pp. 844-847 ◽  
Author(s):  
Raphael Brown ◽  
Abdullah Al-Khalidi ◽  
Douglas Macfarlane ◽  
Sanna Taking ◽  
Gary Ternent ◽  
...  

2020 ◽  
Vol 54 (7) ◽  
pp. 684
Author(s):  
Y.-C. Lin ◽  
J.-S. Niu ◽  
W.-C. Liu ◽  
J.-H. Tsai

A new Pd|HfO2|AlGaN|GaN metal-oxide-semiconductor (MOS) enhancement-mode high electron mobility transistor (HEMT) is fabricated with low-temperature sensitization, activation, electroless-plating, and two-step gate-recess approaches. Experimentally, a high positive threshold voltage Vth of 1.96 V, a very low gate leakage IG of 6.3·10-8 mA/mm, a high maximum extrinsic transconductance gm,max of 75.3 mS/mm, a high maximum drain saturation current ID,max of 266.9 mA/mm, and a high ON/OFF current ratio of 7.6·107 are obtained at 300 K. Moreover, the related temperature-dependent characteristics, over temperature ranges from 300 to 500 K, are comprehensively studied. The very low temperature coefficients on gate current, drain saturation current, transconductance, and threshold voltage confirm the thermal-stable capability of the studied device. Therefore, based on these advantages, the studied Pd|HfO2|AlGaN|GaN MOS structure is suitable for the development of high-performance HEMTs. Keywords: HfO2, AlGaN|GaN, metal-oxide-semiconductor, high electron mobility transistor, electroless plating, gate recess, threshold voltage.


Author(s):  
T. D. Subash ◽  
T. Gnanasekaran ◽  
P. Deepthi Nair

The performance of AlInSb/InSb heterostructure with various parameters is considered with T-Cad simulation. As the heterojunctions are having more advantageous properties that is a real support for so many application such as solar cells, semiconductor cells and transistors. Special properties of semiconductors are discussed here with various parameters that are depending up on the performance of accurate device [Pardeshi H., Pati S. K., Raj G., Mohankumar N., Sarkar C. K., J. Semicond. 33(12):124001-1–124001-7, 2012]. The maximum drain current density is achieved with improving the density of two-dimensional electron gas (2DEG) and with high velocity. High electron mobility transistor (HEMT) structure is used with the different combinations of layers which have different bandgaps. Parameters such as electron mobility, bandgap, dielectric constant, etc., are considered differently for each layer [Zhang A., Zhang L., Tang Z., IEEE Trans. Electron Devices 61(3):755–761, 2014]. The high electron mobility electrons are now widely used in so many applications. The proposed work of AlInSb/InSb heterostructure implements the same process which will be a promise for future research works.


2021 ◽  
Author(s):  
Jeetendra Singh ◽  
Archana Verma ◽  
Vijay Kumar Tewari ◽  
Shailendra Singh

Abstract The need of performance enhancement at the RF and millimeter wave is highly desirable to eliminate the heating effects and power dissipation. Silicon substarte found to be a suitable candidate which reduces about 70% channel temperature than sapphire. To achieve high performance, a GaN on the Silicon substrate high electron mobility transistor is designed and its various performance paramters are analyzed by varying the design specifications. Moreover, the problem of blocking voltage improvement is resolved by epitaxial design approach. Since, threshold voltage, doping-level, work-function of gate material and channel length are considered as some of the important parameters while device modeling. Therefore, the impact of these parameters is examined and analyzed to enehace the performance and reliability of the device for RF applications. The performance parameters like trans-conductance, drain current curves are plotted at different state of device physical and electrical parameters. Results exhibits maximum value of transconductance gm=13 milli-mho, minimum gate capacitance Cg=0.5pf, wheras Vth is varied between − 0.25 volts to 0.25 volts.


2006 ◽  
Vol 45 (No. 35) ◽  
pp. L932-L934 ◽  
Author(s):  
Li-Hsin Chu ◽  
Heng-Tung Hsu ◽  
Edward-Yi Chang ◽  
Tser-Lung Lee ◽  
Sze-Hung Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document