scholarly journals Basic level scene categorization is affected by unrecognizable category-specific image features

2010 ◽  
Vol 9 (8) ◽  
pp. 948-948 ◽  
Author(s):  
L. Loschky ◽  
B. Hansen ◽  
A. Fintzi ◽  
A. Bjerg ◽  
K. Ellis ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandro L. Wiesmann ◽  
Laurent Caplette ◽  
Verena Willenbockel ◽  
Frédéric Gosselin ◽  
Melissa L.-H. Võ

AbstractHuman observers can quickly and accurately categorize scenes. This remarkable ability is related to the usage of information at different spatial frequencies (SFs) following a coarse-to-fine pattern: Low SFs, conveying coarse layout information, are thought to be used earlier than high SFs, representing more fine-grained information. Alternatives to this pattern have rarely been considered. Here, we probed all possible SF usage strategies randomly with high resolution in both the SF and time dimensions at two categorization levels. We show that correct basic-level categorizations of indoor scenes are linked to the sampling of relatively high SFs, whereas correct outdoor scene categorizations are predicted by an early use of high SFs and a later use of low SFs (fine-to-coarse pattern of SF usage). Superordinate-level categorizations (indoor vs. outdoor scenes) rely on lower SFs early on, followed by a shift to higher SFs and a subsequent shift back to lower SFs in late stages. In summary, our results show no consistent pattern of SF usage across tasks and only partially replicate the diagnostic SFs found in previous studies. We therefore propose that SF sampling strategies of observers differ with varying stimulus and task characteristics, thus favouring the notion of flexible SF usage.


2013 ◽  
Vol 25 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Rachel E. Ganaden ◽  
Caitlin R. Mullin ◽  
Jennifer K. E. Steeves

Traditionally, it has been theorized that the human visual system identifies and classifies scenes in an object-centered approach, such that scene recognition can only occur once key objects within a scene are identified. Recent research points toward an alternative approach, suggesting that the global image features of a scene are sufficient for the recognition and categorization of a scene. We have previously shown that disrupting object processing with repetitive TMS to object-selective cortex enhances scene processing possibly through a release of inhibitory mechanisms between object and scene pathways [Mullin, C. R., & Steeves, J. K. E. TMS to the lateral occipital cortex disrupts object processing but facilitates scene processing. Journal of Cognitive Neuroscience, 23, 4174–4184, 2011]. Here we show the effects of TMS to the transverse occipital sulcus (TOS), an area implicated in scene perception, on scene and object processing. TMS was delivered to the TOS or the vertex (control site) while participants performed an object and scene natural/nonnatural categorization task. Transiently interrupting the TOS resulted in significantly lower accuracies for scene categorization compared with control conditions. This demonstrates a causal role of the TOS in scene processing and indicates its importance, in addition to the parahippocampal place area and retrosplenial cortex, in the scene processing network. Unlike TMS to object-selective cortex, which facilitates scene categorization, disrupting scene processing through stimulation of the TOS did not affect object categorization. Further analysis revealed a higher proportion of errors for nonnatural scenes that led us to speculate that the TOS may be involved in processing the higher spatial frequency content of a scene. This supports a nonhierarchical model of scene recognition.


2012 ◽  
Vol 20 (9) ◽  
pp. 1028-1031
Author(s):  
Michelle R. Greene ◽  
Li Fei-Fei

Author(s):  
J.R. Parsons ◽  
C.W. Hoelke

The direct imaging of a crystal lattice has intrigued electron microscopists for many years. What is of interest, of course, is the way in which defects perturb their atomic regularity. There are problems, however, when one wishes to relate aperiodic image features to structural aspects of crystalline defects. If the defect is inclined to the foil plane and if, as is the case with present 100 kV transmission electron microscopes, the objective lens is not perfect, then terminating fringes and fringe bending seen in the image cannot be related in a simple way to lattice plane geometry in the specimen (1).The purpose of the present work was to devise an experimental test which could be used to confirm, or not, the existence of a one-to-one correspondence between lattice image and specimen structure over the desired range of specimen spacings. Through a study of computed images the following test emerged.


Author(s):  
W. Krakow ◽  
D. A. Smith

The successful determination of the atomic structure of [110] tilt boundaries in Au stems from the investigation of microscope performance at intermediate accelerating voltages (200 and 400kV) as well as a detailed understanding of how grain boundary image features depend on dynamical diffraction processes variation with specimen and beam orientations. This success is also facilitated by improving image quality by digital image processing techniques to the point where a structure image is obtained and each atom position is represented by a resolved image feature. Figure 1 shows an example of a low angle (∼10°) Σ = 129/[110] tilt boundary in a ∼250Å Au film, taken under tilted beam brightfield imaging conditions, to illustrate the steps necessary to obtain the atomic structure configuration from the image. The original image of Fig. 1a shows the regular arrangement of strain-field images associated with the cores of ½ [10] primary dislocations which are separated by ∼15Å.


Author(s):  
W.W. Adams ◽  
G. Price ◽  
A. Krause

It has been shown that there are numerous advantages in imaging both coated and uncoated polymers in scanning electron microscopy (SEM) at low voltages (LV) from 0.5 to 2.0 keV compared to imaging at conventional voltages of 10 to 20 keV. The disadvantages of LVSEM of degraded resolution and decreased beam current have been overcome with the new generation of field emission gun SEMs. In imaging metal coated polymers in LVSEM beam damage is reduced, contrast is improved, and charging from irregularly shaped features (which may be unevenly coated) is reduced or eliminated. Imaging uncoated polymers in LVSEM allows direct observation of the surface with little or no charging and with no alterations of surface features from the metal coating process required for higher voltage imaging. This is particularly important for high resolution (HR) studies of polymers where it is desired to image features 1 to 10 nm in size. Metal sputter coating techniques produce a 10 - 20 nm film that has its own texture which can obscure topographical features of the original polymer surface. In examining thin, uncoated insulating samples on a conducting substrate at low voltages the effect of sample-beam interactions on image formation and resolution will differ significantly from the effect at higher accelerating voltages. We discuss here sample-beam interactions in single crystals on conducting substrates at low voltages and also present the first results on HRSEM of single crystal morphologies which show some of these effects.


2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


2020 ◽  
pp. 24-33
Author(s):  
K. V. Rozov

The article presents the structure, content and results of approbation of the C++ programming course developed for the 10th grade students of physics and mathematics profile and implemented as part of the academic subject “Informatics”. The aim of the course is to develop in the student not only knowledge and skills in programming, but also his algorithmic culture and programming culture as important qualities of a potential IT-specialist. This is facilitated by special control of educational process by the teacher, which consists in monitoring the activities of students in writing programs and timely correction of this activity. The assessment of the level of development of student algorithmic culture and programming culture relative to the basic level of their formation (when mastering the basics of algorithmization and programming in the 9th grade) was carried out on the basis of a number of criteria presented in the article. The results of approbation showed that the specially organized teacher activity makes it possible to increase the level of algorithmic culture and programming culture of high school students when studying the basics of programming in C++.


2014 ◽  
Vol 5 (2) ◽  
pp. 151-156
Author(s):  
Z. Mechbal ◽  
A. Khamlichi

Composites made from E-glass/epoxy or aramid/epoxy are frequently used in aircraft and aerospace industries. These materials are prone to suffer from the presence of delamination, which can reduce severely the performance of aircrafts and even threaten their safety. Since electric conductivity of these composites is rather small, they can propagate electromagnetic waves. Detection of delamination damage can then be monitored by using an electromagnetic penetrating radar scanner, which consists of emitting waves having the form of short time pulses that are centered on a given work frequency. While propagating, these waves undergo partial reflection when running into an obstacle or a material discontinuity. Habitually, the radar is moved at constant speed along a straight path and the reflected signal is processed as a radargram that gives the reflected energy as function of the two-way time and the antenna position.In this work, modeling of electromagnetic wave propagation in composites made from E-glass/epoxy was performed analytically. The electromagnetic wave reflection from a delamination defect was analyzed as function of key intervening factors which include the defect extent and depth, as well as the work frequency. Various simulations were performed and the obtained results have enabled to correlate the reflection pattern image features to the actual delamination defect characteristics which can provide quantification of delamination.


Sign in / Sign up

Export Citation Format

Share Document