scholarly journals Connection between the Solar Cycle and the QBO: The Missing Link

2000 ◽  
Vol 13 (2) ◽  
pp. 328-338 ◽  
Author(s):  
Murry Salby ◽  
Patrick Callaghan

Abstract Evidence of the solar cycle in stratospheric polar temperature rests on a connection to the quasi-biennial oscillation (QBO) of equatorial wind. New evidence reported here establishes a mechanism for how the solar signature in polar temperature follows from the QBO, which itself is shown to vary with the solar cycle. Equatorial westerlies below 30 mb vary systematically with solar activity, as do equatorial easterlies above 30 mb. Changes in their duration introduce a systematic drift into the QBO's phase relative to winter months, when the polar vortex is sensitive to equatorial wind. Corresponding changes in the polar-night vortex are consistent with the solar signature observed in wintertime records of polar temperature that have been stratified according to the QBO.

Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2011. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 582
Author(s):  
Yousuke Yamashita ◽  
Hideharu Akiyoshi ◽  
Masaaki Takahashi

Arctic ozone amount in winter to spring shows large year-to-year variation. This study investigates Arctic spring ozone in relation to the phase of quasi-biennial oscillation (QBO)/the 11-year solar cycle, using satellite observations, reanalysis data, and outputs of a chemistry climate model (CCM) during the period of 1979–2017. For this duration, we found that the composite mean of the Northern Hemisphere high-latitude total ozone in the QBO-westerly (QBO-W)/solar minimum (Smin) phase is slightly smaller than those averaged for the QBO-W/Smax and QBO-E/Smax years in March. An analysis of a passive ozone tracer in the CCM simulation indicates that this negative anomaly is primarily caused by transport. The negative anomaly is consistent with a weakening of the residual mean downward motion in the polar lower stratosphere. The contribution of chemical processes estimated using the column amount difference between ozone and the passive ozone tracer is between 10–20% of the total anomaly in March. The lower ozone levels in the Arctic spring during the QBO-W/Smin years are associated with a stronger Arctic polar vortex from late winter to early spring, which is linked to the reduced occurrence of sudden stratospheric warming in the winter during the QBO-W/Smin years.


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2010 ◽  
Vol 10 (12) ◽  
pp. 30453-30471
Author(s):  
I. Roy ◽  
J. D. Haigh

Abstract. We investigate an apparent inconsistency between two published results concerning the temperature of the winter polar stratosphere and its dependence on the state of the Sun and the phase of the Quasi-Biennial Oscillation (QBO). We find that the differences can be explained by the use of the authors of different pressure levels to define the phase of the QBO. We identify QBO and solar cycle signals in sea level pressure (SLP) data using a multiple linear regression approach. First we used a standard QBO time series dating back to 1953. In the SLP observations dating back to that time we find at high latitudes that individually the solar and QBO signals are weak but that a temporal index representing the combined effects of the Sun and the QBO shows a significant signal. This is such that combinations of low solar activity with westerly QBO and high solar activity with easterly QBO are both associated with a strengthening in the polar modes; while the opposite combinations coincide with a weakening. This result is true irrespective of the choice of QBO pressure level. By employing a QBO dataset reconstructed back to 1900, we extended the analysis and also find a robust signal in the surface SAM; though weaker for surface NAM. Our results suggest that solar variability, modulated by the phase of QBO, influences zonal mean temperatures at high latitudes in the lower stratosphere and subsequently affect sea level pressure near the poles. Thus a knowledge of the state of the Sun, and the phase of the QBO might be useful in surface climate prediction.


2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


2010 ◽  
Vol 67 (5) ◽  
pp. 1402-1419 ◽  
Author(s):  
James A. Anstey ◽  
Theodore G. Shepherd ◽  
John F. Scinocca

Abstract The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.


2020 ◽  
Author(s):  
Jian Rao ◽  
Chaim Garfinkel ◽  
Ian White ◽  
Chen Schwartz

<p>Using 17 CMIP5/6 models with a spontaneously-generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: (i) the Holtan-Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), (ii) the subtropical zonal wind downward arching over the Pacific, and (iii) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. Firstly, most models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the observed HT effect. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the QBO → vortex → tropospheric NAM/AO chain is not simulated. For the second pathway associated with the downward arching of the QBO winds, seven models incorrectly or poorly simulate the extratropical easterly anomaly center over 20–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not resolved in those models, leading to an underestimated or incorrectly modelled height response over North Pacific. However the other ten do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Nine models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the ERA-Interim reanalysis, and nine models consistently confirm little modulation of the ocean basin-wide Walker circulation and ENSO events by the QBO.</p>


2017 ◽  
Vol 608 ◽  
pp. A87 ◽  
Author(s):  
D. Salabert ◽  
R. A. García ◽  
A. Jiménez ◽  
L. Bertello ◽  
E. Corsaro ◽  
...  

We study the variability of solar activity using new photospheric proxies originally developed for the analysis of stellar magnetism with the CoRoT and Kepler photometric observations. These proxies were obtained by tracking the temporal modulations in the observations associated with the spots and magnetic features as the Sun rotates. We analyzed 21 yr of observations, spanning solar cycles 23 and 24, collected by the space-based photometric VIRGO and radial velocity GOLF instruments on board the SoHO satellite. We then calculated the photospheric activity proxy Sph is for each of the three VIRGO photometers and the associated Svel proxy from the radial velocity GOLF observations. Comparisons with several standard solar activity proxies sensitive to different layers of the Sun demonstrate that these new activity proxies, Sph and Svel, provide a new manner to monitor solar activity. We show that both the long- and short-term magnetic variabilities respectively associated with the 11-yr cycle and the quasi-biennial oscillation are well monitored, and that the magnetic field interaction between the subsurface, photosphere, and chromosphere of the Sun was modified between Cycle 24 and Cycle 23. Furthermore, the photometric proxies show a wavelength dependence of the response function of the solar photosphere among the three channels of the VIRGO photometers, providing inputs for the study of the stellar magnetism of Sun-like stars.


2020 ◽  
Vol 20 (11) ◽  
pp. 6259-6271
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Johanna Tamminen

Abstract. Observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used to study the effect of energetic particle precipitation (EPP, as proxied by the geomagnetic activity index, Ap) on the Antarctic stratospheric NO2 column in late winter–spring (August–December) during the period from 2005 to 2017. We show that the polar (60–90∘ S) stratospheric NO2 column is significantly correlated with EPP throughout the Antarctic spring, until the breakdown of the polar vortex in November. The strongest correlation takes place during years with the easterly phase of the quasi-biennial oscillation (QBO). The QBO modulation may be a combination of different effects: the QBO is known to influence the amount of the primary NOx source (N2O) via transport from the Equator to the polar region; and the QBO phase also affects polar temperatures, which may provide a link to the amount of denitrification occurring in the polar vortex. We find some support for the latter in an analysis of temperature and HNO3 observations from the Microwave Limb Sounder (MLS, on Aura). Our results suggest that once the background effect of the QBO is accounted for, the NOx produced by EPP significantly contributes to the stratospheric NO2 column at the time and altitudes when the ozone hole is present in the Antarctic stratosphere. Based on our findings, and the known role of NOx as a catalyst for ozone loss, we propose that as chlorine activation continues to decrease in the Antarctic stratosphere, the total EPP-NOx needs be accounted for in predictions of Antarctic ozone recovery.


Sign in / Sign up

Export Citation Format

Share Document