scholarly journals On the Extreme Variability and Change of Cold-Season Temperatures in Northwest Canada

2008 ◽  
Vol 21 (1) ◽  
pp. 94-113 ◽  
Author(s):  
Kit K. Szeto

Abstract The Mackenzie River basin (MRB) in northwestern Canada is a climatologically important region that exerts significant influences on the weather and climate of North America. The region exhibits the largest cold-season temperature variability in the world on both the intraseasonal and interannual time scales. In addition, some of the strongest recent warming signals have been observed over the basin. To understand the nature of these profound and intriguing observed thermal characteristics of the region, its atmospheric heat budget is assessed by using the NCEP–NCAR reanalysis dataset. The composite heat budgets and large-scale atmospheric conditions that are representative of anomalous winters in the region are examined in unison to study the processes that are responsible for the development of extreme warm/cold winters in the MRB. It is shown that the large winter temperature variability of the region is largely a result of the strong variability of atmospheric circulations over the North Pacific, the selective enhancement/weakening of latent heating of the cross-barrier flow for various onshore flow configurations, and synoptic-scale feedback processes that accentuate the thermal response of the basin to the changes in upwind conditions. The improved understanding of mechanisms that govern the thermal response of the basin to changes in the upstream environment provides a theoretical basis to interpret the climate change and modeling results for the region. In particular, the large recent warming trend observed for the region can be understood as the enhanced response of the basin to the shift in North Pacific circulation regime during the mid-1970s. The strong cold bias that affected the region in some climate model results can be attributed to the underprediction of orographic precipitation and associate latent heating of the cross-barrier flow, and the subsequent weakening of mean subsidence and warming over the basin in the models.

2021 ◽  
Vol 18 (20) ◽  
pp. 5767-5787
Author(s):  
Alexandra Pongracz ◽  
David Wårlind ◽  
Paul A. Miller ◽  
Frans-Jan W. Parmentier

Abstract. The Arctic is warming rapidly, especially in winter, which is causing large-scale reductions in snow cover. Snow is one of the main controls on soil thermodynamics, and changes in its thickness and extent affect both permafrost thaw and soil biogeochemistry. Since soil respiration during the cold season potentially offsets carbon uptake during the growing season, it is essential to achieve a realistic simulation of the effect of snow cover on soil conditions to more accurately project the direction of arctic carbon–climate feedbacks under continued winter warming. The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model has used – up until now – a single layer snow scheme, which underestimated the insulation effect of snow, leading to a cold bias in soil temperature. To address this shortcoming, we developed and integrated a dynamic, multi-layer snow scheme in LPJ-GUESS. The new snow scheme performs well in simulating the insulation of snow at hundreds of locations across Russia compared to observations. We show that improving this single physical factor enhanced simulations of permafrost extent compared to an advanced permafrost product, where the overestimation of permafrost cover decreased from 10 % to 5 % using the new snow scheme. Besides soil thermodynamics, the new snow scheme resulted in a doubled winter respiration and an overall higher vegetation carbon content. This study highlights the importance of a correct representation of snow in ecosystem models to project biogeochemical processes that govern climate feedbacks. The new dynamic snow scheme is an essential improvement in the simulation of cold season processes, which reduces the uncertainty of model projections. These developments contribute to a more realistic simulation of arctic carbon–climate feedbacks.


2021 ◽  
Author(s):  
Alexandra Pongracz ◽  
David Wårlind ◽  
Paul A. Miller ◽  
Frans-Jan W. Parmentier

Abstract. The Arctic is warming rapidly, especially in winter, which is causing large-scale reductions in snow cover. Snow is one of the main controls on soil thermodynamics, and changes in its thickness and extent affect both permafrost thaw and soil biogeochemistry. Since soil respiration during the cold season potentially offsets carbon uptake during the growing season, it is essential to achieve a realistic simulation of the effect of snow cover on soil conditions to more accurately project the direction of arctic carbon-climate feedbacks under continued winter warming. The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model has used – up until now – a single layer snow scheme, which underestimated the insulation effect of snow, leading to a cold bias in soil temperature. To address this shortcoming, we developed and integrated a dynamic, multi-layer snow scheme in LPJ-GUESS. The new snow scheme performs well in simulating the insulation of snow at hundreds of locations across Russia compared to observations. We show that improving this single physical factor enhanced simulations of permafrost extent compared to an advanced permafrost product. Besides soil thermodynamics, the new snow scheme resulted in increased winter respiration and an overall lower soil carbon content due to warmer soil conditions. The Dynamic scheme also influenced vegetation dynamics, resulting in an improved vegetation distribution and tundra-taiga boundary simulation. This study highlights the importance of a correct representation of snow in ecosystem models to project biogeochemical processes that govern climate feedbacks. The new dynamic snow scheme is an essential improvement in the simulation of cold season processes, which reduces the uncertainty of model projections. These developments contribute to a better understanding of the Arctic's role in the global climate system.


2004 ◽  
Vol 68 (2) ◽  
Author(s):  
Peter F. Worcester ◽  
Bruce D. Cornuelle ◽  
Brian D. Dushaw ◽  
Matthew A. Dzieciuch ◽  
Bruce M. Howe ◽  
...  

2014 ◽  
Vol 71 (7) ◽  
pp. 1717-1727 ◽  
Author(s):  
A. Jason Phillips ◽  
Lorenzo Ciannelli ◽  
Richard D. Brodeur ◽  
William G. Pearcy ◽  
John Childers

Abstract This study investigated the spatial distribution of juvenile North Pacific albacore (Thunnus alalunga) in relation to local environmental variability [i.e. sea surface temperature (SST)], and two large-scale indices of climate variability, [the Pacific Decadal Oscillation (PDO) and the Multivariate El Niño/Southern Oscillation Index (MEI)]. Changes in local and climate variables were correlated with 48 years of albacore troll catch per unit effort (CPUE) in 1° latitude/longitude cells, using threshold Generalized Additive Mixed Models (tGAMMs). Model terms were included to account for non-stationary and spatially variable effects of the intervening covariates on albacore CPUE. Results indicate that SST had a positive and spatially variable effect on albacore CPUE, with increasingly positive effects to the North, while PDO had an overall negative effect. Although albacore CPUE increased with SST both before and after a threshold year of 1986, such effect geographically shifted north after 1986. This is the first study to demonstrate the non-stationary spatial dynamics of albacore tuna, linked with a major shift of the North Pacific. Results imply that if ocean temperatures continue to increase, US west coast fisher communities reliant on commercial albacore fisheries are likely to be negatively affected in the southern areas but positively affected in the northern areas, where current albacore landings are highest.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


2014 ◽  
Vol 27 (4) ◽  
pp. 1395-1412 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS. A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


Sign in / Sign up

Export Citation Format

Share Document