scholarly journals Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations

2008 ◽  
Vol 21 (21) ◽  
pp. 5437-5454 ◽  
Author(s):  
R. S. Ajayamohan ◽  
Suryachandra A. Rao ◽  
Toshio Yamagata

Abstract The influence of the Indian Ocean dipole (IOD) on the poleward propagation of boreal summer intraseasonal oscillations (BSISOs) is examined using observed datasets. This study finds that coherent (incoherent) poleward propagation of precipitation anomalies from 5°S to 25°N are observed during negative (positive) IOD years. Disorganized poleward propagation of BSISO in the south equatorial Indian Ocean is observed during positive IOD years. The rationale behind such an anomaly in the poleward propagation of BSISO in contrasting IOD years is identified based on the theory of northward-propagating BSISO, which suggests the influential role of air–sea interaction on the genesis and propagation of BSISO. It is found that the mean structure of moisture convergence and meridional specific humidity distribution undergoes radical changes in contrasting IOD years, which in turn influences the meridional propagation of BSISO. This study assumes significance, considering the critical role of BSISO in modulating the seasonal mean summer monsoon rainfall.

2021 ◽  
Author(s):  
Aditya Kottapalli ◽  
Vinayachandran P N

Abstract The northward propagation of intraseasonal oscillations (ISO) is one of the major modes of variability in the tropics during boreal summer, associated with active and break spells of monsoon rainfall over the Indian region, and modulate the Indian summer monsoon rainfall (ISMR). The northward march starts close to the equator over warm waters of the Indian Ocean and continues till the foothills of the Himalayas. The northward propagations tend to be weaker during positive Indian Ocean Dipole (pIOD) years. We have used the "moisture mode" framework to understand the processes responsible for the weakening of northward propagations during IOD years. Our analyses show that moistening caused by the horizontal advection was the major contributor for the northward propagations during negative IOD (nIOD) years, and its amplitude is much smaller during pIOD years. The reduction in the zonal advection during pIOD is responsible for the weakening of northward propagations. Also, the mean structure of entropy between 925hpa – 500hpa levels remained similar over most of the monsoon region across the contrasting IOD years. The reason for weaker northward propagations can be attributed to the weaker zonal wind perturbations at intraseasonal timescales. The weaker zonal wind perturbations during ISO events in pIOD years owing to cooler sea surface temperatures (SST) in the South-East Equatorial Indian Ocean (SEIO) and warmer West Equatorial Indian Ocean (WEIO) and South-East Arabian Sea (SEAS) is proposed to be the possible reason for the weakening of northward propagations during pIOD years.


2010 ◽  
Vol 67 (3) ◽  
pp. 589-610 ◽  
Author(s):  
H. Annamalai

Abstract During boreal summer, both the monsoon trough and the equatorial Indian Ocean (EIO) receive intense climatological precipitation. At various time scales, EIO sea surface temperature (SST) and/or precipitation variations interact with rainfall along the trough. For instance, during July–August in strong Indian Ocean dipole/zonal mode (IODZM) years, EIO experiences below-normal rainfall while regions along the monsoon trough receive above-normal rainfall. A lack of spatial coherency between SST and precipitation variations is noted in both regions. This paper posits the hypothesis that interaction between equatorial waves and moist physics is important in determining precipitation anomalies over these regions and in setting up the teleconnection. The hypothesis is tested using a linear baroclinic model (LBM). IODZM-related SST anomalies derived from multicentury integrations of the Geophysical Fluid Dynamics Laboratory coupled model (GFDL CM2.1) are used to force the LBM. Consistent with observations and CM2.1 composites of strong IODZM events, steady-state LBM solutions simulate zonally oriented negative (positive) precipitation anomalies over the EIO (along the monsoon trough). To identify the processes simulated in the LBM, moisture and moist static energy budgets are examined. Over both regions, analyses reveal that moisture advection contributes the most to the LBM budget, with advection of climatological moisture by the anomalous wind being the principal factor. Specifically, in response to cold SST anomalies in the EIO, moist stability due to surface fluxes increases, giving rise to below-normal rainfall. These conditions produce anomalous anticyclonic circulation as a Rossby wave response in the lower troposphere. Over the central-eastern EIO, this anomalous circulation advects climatological air of lower moisture content from the subtropics. In addition, advection of anomalous moisture by both climatological and anomalous wind results in anomalous dry conditions over the entire EIO. In contrast, anomalous divergent circulations that emanate from the EIO advect climatological air of higher moisture content from the equatorial region, amplifying rainfall along the monsoon trough. Consequently, the two regions are connected by a thermally driven overturning meridional circulation. Budget diagnostics performed with CM2.1 composites and the ECMWF interim reanalysis for observed IODZM events support the hypothesis. The results here imply that in coupled models, realistic representation of the basic state and details of the moist processes are necessary for successful monsoon prediction.


2005 ◽  
Vol 18 (18) ◽  
pp. 3777-3795 ◽  
Author(s):  
Xian-An Jiang ◽  
Tim Li

Abstract The characteristic features of the boreal summer intraseasonal oscillation (BSISO) during its reinitiation period are studied using NCEP–NCAR reanalysis. Based on these observations and with the aid of an anomalous atmospheric general circulation model (AGCM), a possible mechanism responsible for the BSISO reinitiation is elucidated. The western equatorial Indian Ocean along the eastern African coast tends to be a key region for the phase transition of the BSISO from an enhanced to suppressed convective phase, or vise versa. The major precursory feature associated with reinitiation of suppressed convection is found in the divergence and reduced specific humidity in the boundary layer. Numerical experiments indicate that the low-level divergence is caused by the cold horizontal temperature advection and associated adiabatic warming (descending motion) in situ. The summer mean state is found to be important for the cold horizontal temperature advection through the modulation of a Gill-type response to an intraseasonal oscillation (ISO) heating in the eastern equatorial Indian Ocean. The results in this study suggest a self-sustained paradigm in the Indian Ocean for the BSISO; that is, the BSISO could be a basinwide phenomenon instead of a global circumstance system as hypothesized for the boreal winter ISO (i.e., the Madden–Julian oscillation).


Author(s):  
Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.


2021 ◽  
Author(s):  
Kavirajan Rajendran ◽  
Sajani Surendran ◽  
Stella Jes Varghese ◽  
Anjali Sathyanath

Abstract We analyse the performance of global climate models of 6th generation of Coupled Model Intercomparison Project (CMIP6) in simulating climatological summer monsoon rainfall over India, interannual variability (IAV) of all-India summer monsoon rainfall (ISMR) and its teleconnections with rainfall variability over equatorial Pacific and Indian Oceans. The multimodel ensemble mean (MME) of 61 CMIP6 models shows the best skill in simulating mean monsoon rainfall over India compared to the MMEs of 6th generation atmosphere-only models (AMIP6) and the previous generations of Atmospheric and Coupled Model Intercomparison Projects (AMIPs and CMIPs). Systematic improvement and reduction in bias are evident from lower to higher AMIPs/CMIPs. Still, there exists dry bias over a narrow region of the monsoon zone of central India besides wet and cold bias over the surrounding oceans. The persistence of errors in atmosphere-only models hints that the source of errors could be with atmosphere models. Fifteen CMIP6 models selected through objective criteria, perform the best in simulating mean monsoon, IAV of ISMR, the strong inverse relationship between ISMR and Boreal summer El Nino-Southern Oscillation (ENSO), and the inverse relationship between all-India rainfall and north-west tropical Pacific rainfall in June. Several models reproduce the dipole structure of Equatorial Indian Ocean Oscillation (EQUINOO) with the centres over western and eastern equatorial Indian Ocean. But, ISMR-EQUINOO relationship in many of them is opposite to the observed. Our analysis implies the need for capturing ISMR-EQUINOO link to improve the simulation of IAV of ISMR which is crucial for reliable monsoon prediction and projection.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

Abstract. Regional climatic implications of aerosol black carbon (BC) are well recognized over South Asia, which has a wide variety of anthropogenic sources in a large abundance. Significant uncertainties remain in its quantification due to lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components), which determine the absorption potential of BC. Especially the information on mixing state of BC is extremely sparse over this region. In this study, first-ever observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the south Asian outflow to Southeastern Arabian Sea, northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the ship cruise of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) during winter-2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. Highest rBC mass concentrations (~ 938 ± 293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ~ 2.16 ± 0.19 are found over the Southeast Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (~ 546 ± 80 ng m−3), BC still remained thickly coated (RCT ~ 2.05 ± 0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (~ 206 ± 114 ng m−3), with a moderately thick coating (RCT ~ 1.73 ± 0.16). Even over oceanic regions far from the landmass, regions which received the outflow from more industrialized east coast/the Bay of Bengal had thicker coating (~ 104 nm) compared to regions that received outflow from the west coast/peninsular India (~ 86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to varying extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass-size distributions were similar over all the regions. The observed mono-modal distribution with mean mass median diameters (MMD) in the range of 0.19–0.20 μm suggested mixed sources of BC. The mean fraction of BC containing particles (FBC) varied in the range 0.20–0.28 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.77 ± 2.77) over the outflow regions compared to the remote ocean (4.29 ± 1.54) highlighting the role of outflow in providing condensable material for coating on rBC. These parameters, along with the information on size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coating on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. Association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.


Sign in / Sign up

Export Citation Format

Share Document