scholarly journals Recent Changes in Surface Humidity: Development of the HadCRUH Dataset

2008 ◽  
Vol 21 (20) ◽  
pp. 5364-5383 ◽  
Author(s):  
Katharine M. Willett ◽  
Philip D. Jones ◽  
Nathan P. Gillett ◽  
Peter W. Thorne

Abstract Water vapor constitutes the most significant greenhouse gas, is a key driver of many atmospheric processes, and hence, is fundamental to understanding the climate system. It is a major factor in human “heat stress,” whereby increasing humidity reduces the ability to stay cool. Until now no truly global homogenized surface humidity dataset has existed with which to assess recent changes. The Met Office Hadley Centre and Climatic Research Unit Global Surface Humidity dataset (HadCRUH), described herein, provides a homogenized quality controlled near-global 5° by 5° gridded monthly mean anomaly dataset in surface specific and relative humidity from 1973 to 2003. It consists of land and marine data, and is geographically quasi-complete over the region 60°N–40°S. Between 1973 and 2003 surface specific humidity has increased significantly over the globe, tropics, and Northern Hemisphere. Global trends are 0.11 and 0.07 g kg−1 (10 yr)−1 for land and marine components, respectively. Trends are consistently larger in the tropics and in the Northern Hemisphere during summer, as expected: warmer regions exhibit larger increases in specific humidity for a given temperature change under conditions of constant relative humidity, based on the Clausius–Clapeyron equation. Relative humidity trends are not significant when averaged over the landmass of the globe, tropics, and Northern Hemisphere, although some seasonal changes are significant. A strong positive bias is apparent in marine humidity data prior to 1982, likely owing to a known change in reporting practice for dewpoint temperature at this time. Consequently, trends in both specific and relative humidity are likely underestimated over the oceans.

2015 ◽  
Vol 16 (1) ◽  
pp. 465-472 ◽  
Author(s):  
Henning W. Rust ◽  
Tim Kruschke ◽  
Andreas Dobler ◽  
Madlen Fischer ◽  
Uwe Ulbrich

Abstract The Water and Global Change (WATCH) forcing datasets have been created to support the use of hydrological and land surface models for the assessment of the water cycle within climate change studies. They are based on 40-yr ECMWF Re-Analysis (ERA-40) or ECMWF interim reanalysis (ERA-Interim) with temperatures (among other variables) adjusted such that their monthly means match the monthly temperature dataset from the Climatic Research Unit. To this end, daily minimum, maximum, and mean temperatures within one calendar month have been subjected to a correction involving monthly means of the respective month. As these corrections can be largely different for adjacent months, this procedure potentially leads to implausible differences in daily temperatures across the boundaries of calendar months. We analyze day-to-day temperature fluctuations within and across months and find that across-months differences are significantly larger, mostly in the tropics and frigid zones. Average across-months differences in daily mean temperature are typically between 10% and 40% larger than their corresponding within-months average temperature differences. However, regions with differences up to 200% can be found in tropical Africa. Particularly in regions where snowmelt is a relevant player for hydrology, a few degrees Celsius difference can be decisive for triggering this process. Daily maximum and minimum temperatures are affected in the same regions, but in a less severe way.


2017 ◽  
Vol 8 (3) ◽  
pp. 719-747 ◽  
Author(s):  
Robert J. H. Dunn ◽  
Kate M. Willett ◽  
Andrew Ciavarella ◽  
Peter A. Stott

Abstract. We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T–q and T–rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T–q correlation from the models is more steeply positive than the observations in all regions, and this over-correlation may be due to missing processes in the models. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere-only model, leads to questions over future projections of impacts related to changes in surface relative humidity. It also precludes any formal detection and attribution assessment.


2017 ◽  
Author(s):  
Robert J. H. Dunn ◽  
Kate M. Willett ◽  
Andrew Ciavarella ◽  
Peter A. Stott

Abstract. We compare the latest observational land-surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, at decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea-surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed and historical model climatologies show that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends are relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the Tropics, and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitudes. Relationships between temperature and humidity anomalies (T–q and T–rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T–q correlation from the models is more steeply positive in all regions than the observations, and this over-correlation may be due to missing processes in the models. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere only model, leads to questions over future projections of impacts related to changes in surface relative humidity. It also precludes any formal detection and attribution assessment.


2008 ◽  
Vol 136 (7) ◽  
pp. 2796-2803 ◽  
Author(s):  
Hideki Kanamaru ◽  
Masao Kanamitsu

Abstract As an extreme demonstration of regional climate model capability, a dynamical downscaling of the NCEP–NCAR reanalysis was successfully performed over the Northern Hemisphere. Its success is due to the use of the scale-selective bias-correction scheme, which maintains the large-scale analysis of the driving global reanalysis in the interior of the domain where lateral boundary forcing has very little control. The downscaled analysis was found to produce reasonable regional details by comparison against 0.5° gridded analysis from the Climatic Research Unit of the University of East Anglia. Comparisons with smaller-area regional downscaling runs in India, Europe, and Japan using the same downscaling system showed that there is no degradation of quality in downscaled climate analysis by expanding the domain from a regional scale to a hemispherical scale.


2019 ◽  
Vol 58 (3) ◽  
pp. 495-510 ◽  
Author(s):  
Xiaoqing Peng ◽  
Tingjun Zhang ◽  
Yijing Liu ◽  
Jing Luo

AbstractFreezing/thawing indices are useful for assessments of climate change, surface and subsurface hydrology, energy balance, moisture balance, carbon exchange, ecosystem diversity and productivity. Current freezing/thawing indices are inadequate to meet these requirements. We use 16 Coupled Model Intercomparison Project phase 5 (CMIP5) models available for 1850–2005, three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) during 2006–2100, and Climatic Research Unit gridded observations for 1901–2014, to assess the performance of freezing/thawing indices derived from CMIP5 models during 1901–2005. We also analyzed past spatial patterns of freezing/thawing indices and projected these over three RCPs. Results show that CMIP5 models can reproduce the spatial pattern of freezing/thawing indices in the Northern Hemisphere but that the thawing index slightly underestimated observations and the freezing index slightly overestimated them. The thawing index agreed slightly better with observations than did the freezing index. There is significant spatial variability in the freezing/thawing indices, ranging from 0° to 10 000°C day. Over the entire Northern Hemisphere, the time series of the area-averaged thawing index derived from CMIP5 output increased significantly at about 1.14°C day yr−1 during 1850–2005, 1.51°C day yr−1 for RCP2.6, 5.32°C day yr−1 for RCP4.5, and 13.85°C day yr−1 for RCP8.5 during 2006–2100. The area-averaged freezing index decreased significantly at −1.39°C day yr−1 during 1850–2004, −1.2°C day yr−1 for RCP2.6, −4.3°C day yr−1 for RCP4.5, and −9.8°C day yr−1 for RCP8.5 during 2006–2100. The greatest decreases in the freezing index are projected to occur at high latitudes and high altitudes, where the magnitude of the decreasing rate of the freezing index is far greater than that of the increasing rate of the thawing index.


2017 ◽  
Author(s):  
Chloé Meyer

Estimation of the annual economical exposition to drought based on Standardized Precipitation Index. It is based on three sources: 1) A global monthly gridded precipitation dataset obtained from the Climatic Research Unit (University of East Anglia). 2) A GIS modeling of global Standardized Precipitation Index based on Brad Lyon (IRI, Columbia University) methodology. 3) A Global Domestic Product grid for the year 2010, provided by the World Bank. Unit is expected average annual GDP (2007 as the year of reference) exposed in (US $, year 2000 equivalent). For more information, visit: http://preview.grid.unep.ch/ Cost Drought Exposure Risk


2010 ◽  
Vol 10 (6) ◽  
pp. 16277-16305
Author(s):  
I. Pisso ◽  
P. H. Haynes ◽  
K. S. Law

Abstract. We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and season variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from South and South-East Asia during Northern Hemisphere summer and from the Western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with also non-negligible values extending into northern mid-latitudes particularly in the summer. These first estimates, which include some simplifying assumptions, show larger ODP values than previous studies, particularly over Southern Asia, suggesting that emissions of short-lived halogen source gases in certain geographical regions could have a significant impact on stratospheric ozone depletion.


2005 ◽  
Vol 18 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract Earlier analyses of the annual cycle of the axial angular momentum (AAM) are extended to include mass flows and vertical transports as observed, and to establish angular momentum budgets for various control volumes, using the European Centre for Medium-Range Forecasts (ECMWF) Re-Analyses (ERA) for the years 1979–92, transformed to height coordinates. In particular, the role of the torques is examined. The annual cycle of the zonally averaged angular momentum is large in the latitude belt 20° ⩽ |ϕ| ⩽ 45°, with little attenuation in the vertical up to a height of ∼12 km. The oscillation of the mass term (AAM due to the earth’s rotation) dominates in the lower troposphere, but that of the wind term (relative AAM) is more important elsewhere. The cycle of the friction torque as related to the trade winds prevails in the Tropics. Mountain torque and friction torque are equally important in the extratropical latitudes of the Northern Hemisphere. The annual and the semiannual cycle of the global angular momentum are in good balance with the global mountain and friction torques. The addition of the global gravity wave torque destroys this agreement. The transports must be adjusted if budgets of domains of less than global extent are to be considered. Both a streamfunction, representing the nondivergent part of the fluxes, and a flux potential, describing the divergences/convergences, are determined. The streamfunction pattern mainly reflects the seasonal shift of the Hadley cell. The flux potential links the annual oscillations of the angular momentum with the torques. It is concluded that the interaction of the torques with the angular momentum is restricted to the lower troposphere, in particular, in the Tropics. The range of influence is deeper in the Northern Hemisphere than in the Southern Hemisphere, presumably because of the mountains. The angular momentum cycle in the upper troposphere and stratosphere is not affected by the torques and reflects interhemispheric flux patterns. Budgets for the polar as well as for the midlatitude domains show that fluxes in the stratosphere are important.


Sign in / Sign up

Export Citation Format

Share Document