scholarly journals The Atlantic Multidecadal Oscillation Inferred from the Forced Climate Response in Coupled General Circulation Models

2009 ◽  
Vol 22 (7) ◽  
pp. 1610-1625 ◽  
Author(s):  
Jeff R. Knight

Abstract Instrumental sea surface temperature records in the North Atlantic Ocean are characterized by large multidecadal variability known as the Atlantic multidecadal oscillation (AMO). The lack of strong oscillatory forcing of the climate system at multidecadal time scales and the results of long unforced climate simulations have led to the widespread, although not ubiquitous, view that the AMO is an internal mode of climate variability. Here, a more objective examination of this hypothesis is performed using simulations with natural and anthropogenic forcings from the Coupled Model Intercomparison Project phase 3 (CMIP3) database. Ensemble means derived from these data allow an estimate of the response of models to forcings, as averaging leads to cancellation of the internal variability between ensemble members. In general, the means of individual model ensembles appear to be inconsistent with observed temperatures, although small ensemble sizes result in uncertainty in this conclusion. Combining the ensembles from different models creates a multimodel ensemble of sufficient size to allow for a good estimate of the forced response. This shows that the variability in observed North Atlantic temperatures possess a clearly distinct signature to the climate response expected from forcings. The reliability of this finding is confirmed by sampling those models with low decadal internal variability and by comparing simulated and observed trends. In contrast to the inconsistency with the ensemble mean, the observations are consistent with the spread of responses in the ensemble members, suggesting they can be accounted for by the combined effects of forcings and internal variability. In the most recent period, the results suggest that the North Atlantic is warming faster than expected, and that the AMO entered a positive phase in the 1990s. The differences found between observed and ensemble mean temperatures could arise through errors in the observational data, errors in the models’ response to forcings or in the forcings themselves, or as a result of genuine internal variability. Each of these possibilities is discussed, and it is concluded that internal variability within the natural climate system is the most likely origin of the differences. Finally, the estimate of internal variability obtained using the model-derived ensemble mean is proposed as a new way of defining the AMO, which has important advantages over previous definitions.

2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2018 ◽  
Vol 15 (14) ◽  
pp. 4661-4682 ◽  
Author(s):  
Virginie Racapé ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Laurent Bopp ◽  
...  

Abstract. The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2015 ◽  
Vol 12 (17) ◽  
pp. 15223-15244
Author(s):  
M. L. Breeden ◽  
G. A. McKinley

Abstract. The North Atlantic is the most intense region of ocean CO2 uptake. Here, we investigate multidecadal timescale variability of the partial pressure CO2 (pCO2) that is due to the natural carbon cycle using a regional model forced with realistic climate and pre-industrial atmospheric pCO2 for 1948–2009. Large-scale patterns of natural pCO2 variability are primarily associated with basin-averaged sea surface temperature (SST) that, in turn, is composed of two parts: the Atlantic Multidecadal Oscillation (AMO) and a long-term positive SST trend. The North Atlantic Oscillation (NAO) drives a secondary mode of variability. For the primary mode, positive AMO and the SST trend modify pCO2 with different mechanisms and spatial patterns. Warming with the positive AMO increases subpolar gyre pCO2, but there is also a significant reduction of dissolved inorganic carbon (DIC) due primarily to reduced vertical mixing. The net impact of positive AMO is to reduce pCO2 in the subpolar gyre. Through direct impacts on SST, the net impacts of positive AMO is to increase pCO2 in the subtropical gyre. From 1980 to present, long-term SST warming has amplified AMO impacts on pCO2.


2013 ◽  
Vol 9 (1) ◽  
pp. 143-185 ◽  
Author(s):  
A. Sima ◽  
M. Kageyama ◽  
D.-D. Rousseau ◽  
G. Ramstein ◽  
Y. Balkanski ◽  
...  

Abstract. European loess sequences of the last glacial period (~ 100–15 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been caused by the North Atlantic rapid climate changes: the Dansgaard-Oeschger (DO) and Heinrich (H) events. It has been recently suggested that the North-Atlantic climate signal can be detected further east, in loess deposits from Stayky (50° 05.65' N, 30° 53.92' E), Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations, performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land-surface model, represent a Greenland stadial, a DO interstadial and an H event respectively. Placed in Marine Isotope Stage 3 (~ 60–25 kyr BP) conditions, they only differ by the surface conditions imposed in the North Atlantic between 30° and 63° N. The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west–northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess-paleosol stratigraphic succession in the Stayky area reflects indeed North-Atlantic millennial variations. In the main deflation areas of Western Europe, the vegetation effect alone determined most of the ~ 50% stadial-interstadial flux differences. Even if its impact in Eastern Europe is less pronounced, this effect remains a key factor in modulating aeolian emissions at millennial timescale. Conditions favorable to initiating particularly strong dust storms within a few hundred kilometers upwind from our reference site, simulated in the month of April of the "H event" experiment, support the identification of H events as layers of particularly coarse sedimentation in some very detailed profiles.


2020 ◽  
Vol 33 (6) ◽  
pp. 2351-2370 ◽  
Author(s):  
Olivier Arzel ◽  
Thierry Huck

AbstractAtmospheric stochastic forcing associated with the North Atlantic Oscillation (NAO) and intrinsic ocean modes associated with the large-scale baroclinic instability of the North Atlantic Current (NAC) are recognized as two strong paradigms for the existence of the Atlantic multidecadal oscillation (AMO). The degree to which each of these factors contribute to the low-frequency variability of the North Atlantic is the central question in this paper. This issue is addressed here using an ocean general circulation model run under a wide range of background conditions extending from a supercritical regime where the oceanic variability spontaneously develops in the absence of any atmospheric noise forcing to a damped regime where the variability requires some noise to appear. The answer to the question is captured by a single dimensionless number Γ measuring the ratio between the oceanic and atmospheric contributions, as inferred from the buoyancy variance budget of the western subpolar region. Using this diagnostic, about two-thirds of the sea surface temperature (SST) variance in the damped regime is shown to originate from atmospheric stochastic forcing whereas heat content is dominated by internal ocean dynamics. Stochastic wind stress forcing is shown to substantially increase the role played by damped ocean modes in the variability. The thermal structure of the variability is shown to differ fundamentally between the supercritical and damped regimes, with abrupt modifications around the transition between the two regimes. Ocean circulation changes are further shown to be unimportant for setting the pattern of SST variability in the damped regime but are fundamental for a preferred time scale to emerge.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 389-404 ◽  
Author(s):  
I. Medhaug ◽  
T. Furevik

Abstract. Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s) and the following colder period (1960s–1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.


2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


2019 ◽  
Vol 32 (10) ◽  
pp. 2673-2689 ◽  
Author(s):  
Melissa Gervais ◽  
Jeffrey Shaman ◽  
Yochanan Kushnir

Abstract In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations.


Sign in / Sign up

Export Citation Format

Share Document