Improved ENSO Prediction by Singular Vector Analysis in a Hybrid Coupled Model
Abstract In this study, a method based on singular vector analysis is proposed to improve El Niño–Southern Oscillation (ENSO) predictions. Its essential idea is that the initial errors are projected onto their optimal growth patterns, which are propagated by the tangent linear model (TLM) of the original prediction model. The forecast errors at a given lead time of predictions are obtained, and then removed from the raw predictions. This method is applied to a realistic ENSO prediction model for improving prediction skill for the period from 1980 to 1999. This correction method considerably improves the ENSO prediction skill, compared with the original predictions without the correction.