Interannual Variability of the Cyclonic Activity along the U.S. Pacific Coast: Influences on the Characteristics of Winter Precipitation in the Western United States

2009 ◽  
Vol 22 (21) ◽  
pp. 5732-5747 ◽  
Author(s):  
Boksoon Myoung ◽  
Yi Deng

Abstract This study examines the observed interannual variability of the cyclonic activity along the U.S. Pacific coast and quantifies its impact on the characteristics of both the winter total and extreme precipitation in the western United States. A cyclonic activity function (CAF) was derived from a dataset of objectively identified cyclone tracks in 27 winters (1979/80–2005/06). The leading empirical orthogonal function (EOF1) of the CAF was found to be responsible for the EOF1 of the winter precipitation in the western United States, which is a monopole mode centered over the Pacific Northwest and northern California. On the other hand, the EOF2 of the CAF contributes to the EOF2 of the winter precipitation, which indicates that above-normal precipitation in the Pacific Northwest and its immediate inland regions tends to be accompanied by below-normal precipitation in California and the southwestern United States and vice versa. The first two EOFs of CAF (precipitation) account for about 70% (78%) of the total interannual variance of CAF (precipitation). The second EOF modes of both the CAF and precipitation are significantly linked to the ENSO signal on interannual time scales. A composite analysis further reveals that the leading CAF modes increase (decrease) the winter total precipitation by increasing (decreasing) both the number of rainy days per winter and the extremeness of precipitation. The latter was quantified in terms of the 95th percentile of the daily rain rate and the probability of precipitation being heavy given a rainy day. The implications of the leading CAF modes for the water resources and the occurrence of extreme hydrologic events in the western United States, as well as their dynamical linkages to the Pacific storm track and various atmospheric low-frequency modes (i.e., teleconnection patterns), are also discussed.

2018 ◽  
Vol 19 (3) ◽  
pp. 258-264
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
Megan C. Twomey ◽  
Sierra N. Wolfenbarger

Powdery mildew (caused by Podosphaera macularis) is one of the most important diseases of hop in the western United States. Strains of the fungus virulent on cultivars possessing the resistance factor termed R6 and the cultivar Cascade have become widespread in the Pacific Northwestern United States, the primary hop producing region in the country, rendering most cultivars grown susceptible to the disease at some level. In an effort to identify potential sources of resistance in extant germplasm, 136 male accessions of hop contained in the U.S. Department of Agriculture collection were screened under controlled conditions. Iterative inoculations with three isolates of P. macularis with varying race identified 23 (16.9%) accessions with apparent resistance to all known races of the pathogen present in the Pacific Northwest. Of the 23 accessions, 12 were resistant when inoculated with three additional isolates obtained from Europe that possess novel virulences. The nature of resistance in these individuals is unclear but does not appear to be based on known R genes. Identification of possible novel sources of resistance to powdery mildew will be useful to hop breeding programs in the western United States and elsewhere.


2005 ◽  
Vol 18 (2) ◽  
pp. 372-384 ◽  
Author(s):  
Satish Kumar Regonda ◽  
Balaji Rajagopalan ◽  
Martyn Clark ◽  
John Pitlick

Abstract Analyses of streamflow, snow mass temperature, and precipitation in snowmelt-dominated river basins in the western United States indicate an advance in the timing of peak spring season flows over the past 50 years. Warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of the spring peak flow. In addition, a decrease in snow water equivalent and a general increase in winter precipitation are evident for many stations in the western United States. It appears that in recent decades more of the precipitation is coming as rain rather than snow. The trends are strongest at lower elevations and in the Pacific Northwest region, where winter temperatures are closer to the melting point; it appears that in this region in particular, modest shifts in temperature are capable of forcing large shifts in basin hydrologic response. It is speculated that these trends could be potentially a manifestation of the general global warming trend in recent decades and also due to enhanced ENSO activity. The observed trends in hydroclimatology over the western United States can have significant impacts on water resources planning and management.


2010 ◽  
Vol 49 (9) ◽  
pp. 2058-2068 ◽  
Author(s):  
Karin A. Bumbaco ◽  
Philip W. Mote

Abstract In common with much of the western United States, the Pacific Northwest (defined in this paper as Washington and Oregon) has experienced an unusual number of droughts in the past decade. This paper describes three of these droughts in terms of the precipitation, temperature, and soil moisture anomalies, and discusses different drought impacts experienced in the Pacific Northwest (PNW). For the first drought, in 2001, low winter precipitation in the PNW produced very low streamflow that primarily affected farmers and hydropower generation. For the second, in 2003, low summer precipitation in Washington (WA), and low summer precipitation and a warm winter in Oregon (OR) primarily affected streamflow and forests. For the last, in 2005, a lack of snowpack due to warm temperatures during significant winter precipitation events in WA, and low winter precipitation in OR, had a variety of different agricultural and hydrologic impacts. Although the proximal causes of droughts are easily quantified, the ultimate causes are not as clear. Better precipitation observations in the PNW are required to provide timely monitoring of conditions leading to droughts to improve prediction in the future.


2007 ◽  
Vol 22 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Gregory B. Goodrich

Abstract The influence of the Pacific decadal oscillation (PDO) on important hydroclimatic variables during years of neutral ENSO for 84 climate divisions in the western United States is analyzed from 1925 to 1998. When the 34 neutral ENSO years are split by cold (12 yr) and warm (22 yr) PDOs, the resulting winter precipitation patterns are spatially similar to those that occur during years of La Niña–cold PDO and, to a lesser extent, years of El Niño–warm PDO, respectively, although the characteristic ENSO dipole is not evident. The PDO influence is similar when the winter Palmer drought severity index is analyzed, although the core area of influence moves from the Southwest to the northern Rockies. Correlations between Niño-3.4 SSTs and the hydroclimatic variables reverse sign when the neutral ENSO years are split by PDO phase. The greatest difference between correlations occurs in the characteristic dipole between the Pacific Northwest and the desert Southwest. Since seasonal forecast guidance based on ENSO conditions in the tropical Pacific often yields a forecast of “equal chances” during years of neutral ENSO, forecasters may be able to improve their forecasts for the southwestern United States depending on if the PDO is known to be in the cold (drier than normal) or warm (wetter than normal) phase. However, this can be difficult to implement considering the current uncertainty of the phase of the PDO.


2014 ◽  
Vol 53 (6) ◽  
pp. 1578-1592 ◽  
Author(s):  
Nina S. Oakley ◽  
Kelly T. Redmond

AbstractThe northeastern Pacific Ocean is a preferential location for the formation of closed low pressure systems. These slow-moving, quasi-barotropic systems influence vertical stability and sustain a moist environment, giving them the potential to produce or affect sustained precipitation episodes along the west coast of the United States. They can remain motionless or change direction and speed more than once and thus often pose difficult forecast challenges. This study creates an objective climatological description of 500-hPa closed lows to assess their impacts on precipitation in the western United States and to explore interannual variability and preferred tracks. Geopotential height at 500 hPa from the NCEP–NCAR global reanalysis dataset was used at 6-h and 2.5° × 2.5° resolution for the period 1948–2011. Closed lows displayed seasonality and preferential durations. Time series for seasonal and annual event counts were found to exhibit strong interannual variability. Composites of the tracks of landfalling closed lows revealed preferential tracks as the features move inland over the western United States. Correlations of seasonal event totals for closed lows with ENSO indices, the Pacific decadal oscillation (PDO), and the Pacific–North American (PNA) pattern suggested an above-average number of events during the warm phase of ENSO and positive PDO and PNA phases. Precipitation at 30 U.S. Cooperative Observer stations was attributed to closed-low events, suggesting 20%–60% of annual precipitation along the West Coast may be associated with closed lows.


2019 ◽  
Vol 20 (7) ◽  
pp. 1261-1274
Author(s):  
Christopher P. Konrad

Abstract Streamflow was exceptionally low in the spring and summer of 2015 across much of the western United States because of a regional drought that exploited the sensitivity of both snow- and rain-dominant rivers. Streamflow during 2015 was examined at 324 gauges in the region to assess its response to the amount, form, and seasonal timing of precipitation and the viability of using spatially aggregated, normative models to assess streamflow vulnerability to drought. Seasonal rain and spring snowmelt had the strongest effects on runoff during the same season, but their effects persisted into subsequent seasons as well. Below-normal runoff in the spring of 2015 was pervasive across the region, while distinct seasonal responses were evident in different hydroclimatic settings: January–March (winter) runoff was above normal in most snow-dominant rivers and runoff in all seasons was above normal for much of the desert Southwest. Summer precipitation contributed to summer runoff in both the Pacific Northwest and desert Southwest. A first-order model that presumes runoff is a constant fraction of precipitation (the precipitation elasticity of runoff, E = 1) could be used for assessing and forecasting runoff responses to precipitation deficits across the region, but runoff generally is more vulnerable to drought (E > 1) than predicted by a first-order model. Uncertainty in spring and summer precipitation forecasts remain critical issues for forecasting and predicting summer streamflow vulnerability to drought across much of the western United States.


Author(s):  
Joseph R. Fauver ◽  
Mary E. Petrone ◽  
Emma B. Hodcroft ◽  
Kayoko Shioda ◽  
Hanna Y. Ehrlich ◽  
...  

SummarySince its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.


2003 ◽  
Vol 4 (1) ◽  
pp. 37
Author(s):  
Dean A. Glawe

Magnolia liliiflora Desrousseaux in Lamarck (orthographic variant: M. liliiflora), a species thought to have originated in China (3), is used as a landscape plant in North America. In August 2002, Microsphaera magnifica U. Braun was collected from three plants of M. liliiflora in the Magnolia collection at the Washington Park Arboretum, University of Washington, Seattle. This report documents for the first time a powdery mildew disease of a Magnolia species in the Pacific Northwest, and the first finding of M. magnifica in the western United States. Accepted for publication 14 April 2003. Published 12 May 2003.


1991 ◽  
Vol 51 (1) ◽  
pp. 125-147 ◽  
Author(s):  
Yuzo Murayama

This article examines the determinants of interprefectural patterns of Japanese emigration to the U.S. Pacific Northwest, using a multiple regression analysis. In estimating the regression equations, new proxies are introduced for the “family- and-friends” effect that are free of the statistical problems common in previous studies on long-distance migration. The result shows that the information networks that developed between pioneer immigrants and their home districts played a central role in shaping emigration patterns. The lack of an alternative means of obtaining reliable information about conditions in the United States appears to be responsible.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 451-451
Author(s):  
C. Nischwitz ◽  
G. Newcombe

Norway maple (Acer platanoides L.) was introduced into the continental United States around 1756 as a street tree (2). It is a widely planted shade tree in the northern United States and Canada due to its fast growth rate when young and its tolerance of pavement and dry soils. Powdery mildew is common on Norway maple in Europe with records from at least 22 countries according to the databases of the U.S. National Fungus Collections. However, there are no North American records. In September 2002, powdery mildew was observed on young Norway maple trees along the Idaho-Washington border in Moscow and Pullman, respectively. Mildew was not observed on older Norway maple trees. The mildew occurred mainly on the upper leaf surface as patches of dense, white mycelium with scattered or gregarious cleistothecia. Mean diameter of the cleistothecia was 146 (± 13.4) μm. Short stalked and subsessile asci averaged 69 (± 4.1) μm × 48 (± 5.4) μm. Ascospores averaged 27 (± 3.2) μm × 12 (±0.9) μm. Appendages were deeply cleft, simple, or one to three times dichotomously branched. This mildew fits the description of the European species Sawadaea bicornis (Wallr:Fr.) Homma (1). Also, conforming to S. bicornis were chains of macroconidia (21 (± 2.7) × 14 (± 1.5) μm) and microconida. Fibrosin bodies were seen in both. Infection of only some young trees and its absence in previous years lead us to believe that the introduction is recent in the Pacific Northwest. The susceptibility of native maples to the Norway maple mildew remains to be determined. Specimens have been deposited in the U.S. National Fungus Collections (BPI 842088). References: (1) U. Braun. A monograph of the Erysiphales (powdery mildews) J. Cramer, Berlin-Stuttgart, 1987. (2) D. J. Nowak and R. A. Rowntree. J. Arboric. 16:291, 1990.


Sign in / Sign up

Export Citation Format

Share Document