The Effects of Small-Scale Turbulence on Air–Sea Heat Flux

2011 ◽  
Vol 41 (1) ◽  
pp. 205-220 ◽  
Author(s):  
Fabrice Veron ◽  
W. Kendall Melville ◽  
Luc Lenain

Abstract The air–sea exchange of heat is mainly controlled by the molecular diffusive layer adjacent to the surface. With an order of magnitude difference between the kinematic viscosity and thermal diffusivity of water, the thermal sublayer is embedded within its momentum analog: the viscous sublayer. Therefore, the surface heat exchange rates are greatly influenced by the surface kinematics and dynamics; in particular, small-scale phenomena, such as near-surface turbulence, have the greatest potential to affect the surface fluxes. Surface renewal theory was developed to parameterize the details of the turbulent transfer through the molecular sublayers. The theory assumes that turbulent eddies continuously replace surface water parcels with bulk fluid, which is not in equilibrium with the atmosphere and therefore is able to transfer heat. The so-called controlled-flux technique gives direct measurements of the mean surface lifetime of such surface renewal events. In this paper, the authors present results from field experiments, along with a review of surface renewal theory, and show that previous estimates of air–sea scalar fluxes using the controlled-flux technique may be erroneous if the probability density function (PDF) of surface renewal time scales is different from the routinely assumed exponential distribution. The authors show good agreement between measured and estimated heat fluxes using a surface renewal PDF that follows a χ distribution. Finally, over the range of forcing conditions in these field experiments, a clear relationship between direct surface turbulence measurements and the mean surface renewal time scale is established. The relationship is not dependent on the turbulence generation mechanism. The authors suggest that direct surface turbulence measurements may lead to improved estimates of scalar air–sea fluxes.

Author(s):  
Xiaoxia Hu ◽  
Ali Dolatabadi ◽  
Kamran Siddiqul

We report on a numerical study conducted to investigate the near-surface flow beneath clean and contaminated small-scale wind-driven water surfaces. The numerical model is validated in terms of the velocity and surface wave characteristics. A good agreement is observed between the experimental and numerical values. The results from the numerical model show that the mean velocity in the near-surface region is 25–50% higher beneath the contaminated surface as compared to the clear surface. The present trend is also in agreement with the previous experimental observations.


2014 ◽  
Vol 7 (6) ◽  
pp. 1825-1837 ◽  
Author(s):  
D. Belušić ◽  
D. H Lenschow ◽  
N. J. Tapper

Abstract. The lack of adequate near-surface observations of the stable atmospheric boundary layer spatial structure motivated the development of an instrumented car for mobile turbulence measurements. The calibration and validation of the car measurements are performed using controlled field experiments and a comparison with an instrumented tower. The corrections required to remove the effects of the car motion are shown to be smaller and simpler than the corrections for research aircraft measurements. A car can therefore satisfactorily measure near-surface turbulence using relatively low-cost equipment. Other natural advantages of a car, such as the ability to drive on any road at any time of day or night and follow the terrain slope, as well as its low cost of operation, make it applicable to observations of a variety of flow regimes that cannot be achieved with the usual platforms, such as research aircraft or networks of flux towers.


Nature ◽  
1981 ◽  
Vol 290 (5805) ◽  
pp. 390-392 ◽  
Author(s):  
T. M. Dillon ◽  
J. G. Richman ◽  
C. G. Hansen ◽  
M. D. Pearson

2014 ◽  
Vol 7 (1) ◽  
pp. 949-978 ◽  
Author(s):  
D. Belušić ◽  
D. H Lenschow ◽  
N. J. Tapper

Abstract. The lack of adequate near-surface observations of the stable atmospheric boundary layer spatial structure motivated the development of an instrumented car for mobile turbulence measurements. The calibration and validation of the car measurements are performed using controlled field experiments and a comparison with an instrumented tower. The corrections required to remove the effects of the car motion are shown to be smaller and simpler than the corrections for research aircraft measurements. A car can therefore satisfactorily measure near-surface turbulence using relatively low-cost equipment. Other natural advantages of a car, such as the ability to drive on any road at any time of day or night and follow the terrain slope, as well as its low cost of operation, make it applicable to observations of a variety of flow regimes that cannot be achieved with the usual platforms, such as research aircraft or networks of flux towers.


2008 ◽  
Vol 25 (2) ◽  
pp. 307-326 ◽  
Author(s):  
Fabrice Veron ◽  
W. Kendall Melville ◽  
Luc Lenain

Abstract Ocean surface processes, and air–sea interaction in general, have recently received increased attention because it is now accepted that small-scale surface phenomena can play a crucial role in the air–sea fluxes of heat, mass, and momentum, with important implications for weather and climate studies. Yet, despite good progress in recent years, the air–sea interface and the adjacent atmospheric and marine boundary layers have proven to be difficult to measure in all but the most benign conditions. This has led to the need for novel measurement techniques to quantify processes of air–sea interaction. Here the authors present infrared techniques aimed at simultaneously studying multiple aspects of the air–sea interface and air–sea fluxes. The instrumentation was tested and deployed during several field experiments from Research Platform (R/P) FLIP and Scripps pier. It is shown that these techniques permit the detailed study of the ocean surface temperature and velocity fields. In particular, it is shown that cross-correlation techniques typically used in particle image velocimetry can be used to infer the ocean surface velocity field from passive infrared temperature images. In addition, when conditions make cross-correlation techniques less effective, an active infrared marking and tracking technique [which will be called thermal marker velocimetry (TMV)] can be successfully used to measure the surface velocity and its spatial and temporal derivatives. The thermal marker velocimetry technique also provides estimates of the heat transfer velocity and surface renewal frequencies. Finally, infrared altimetry is used to complement the temperature and kinematic data obtained from passive imagery and active marking. The data obtained during the testing and deployment of this instrumentation provide a novel description of the kinematics of the surface of the ocean.


2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.


2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Tomas Undabeytia ◽  
Uri Shuali ◽  
Shlomo Nir ◽  
Baruch Rubin

This review deals with modification of montmorillonite and other clay-minerals and clays by interacting them with organic cations, for producing slow release formulations of herbicides, and efficient removal of pollutants from water by filtration. Elaboration is on incorporating initially the organic cations in micelles and liposomes, then producing complexes denoted micelle- or liposome-clay nano-particles. The material characteristics (XRD, Freeze-fracture electron microscopy, adsorption) of the micelle– or liposome–clay complexes are different from those of a complex of the same composition (organo-clay), which is formed by interaction of monomers of the surfactant with the clay-mineral, or clay. The resulting complexes have a large surface area per weight; they include large hydrophobic parts and (in many cases) have excess of a positive charge. The organo-clays formed by preadsorbing organic cations with long alkyl chains were also addressed for adsorption and slow release of herbicides. Another examined approach includes “adsorptive” clays modified by small quaternary cations, in which the adsorbed organic cation may open the clay layers, and consequently yield a high exposure of the siloxane surface for adsorption of organic compounds. Small scale and field experiments demonstrated that slow release formulations of herbicides prepared by the new complexes enabled reduced contamination of ground water due to leaching, and exhibited enhanced herbicidal activity. Pollutants removed efficiently from water by the new complexes include (i) hydrophobic and anionic organic molecules, such as herbicides, dissolved organic matter; pharmaceuticals, such as antibiotics and non-steroidal drugs; (ii) inorganic anions, e.g., perchlorate and (iii) microorganisms, such as bacteria, including cyanobacteria (and their toxins). Model calculations of adsorption and kinetics of filtration, and estimation of capacities accompany the survey of results and their discussion.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Song Zhang ◽  
Kai Gu ◽  
Su-Ping Liu ◽  
...  

AbstractVertical deformation profiles of subterranean geological formations are conventionally measured by borehole extensometry. Distributed strain sensing (DSS) paired with fiber-optic cables installed in the ground opens up possibilities for acquiring high-resolution static and quasistatic strain profiles of deforming strata, but it is currently limited by reduced data quality due to complicated patterns of interaction between the buried cables and their surroundings, especially in upper soil layers under low confining pressures. Extending recent DSS studies, we present an improved approach using microanchored fiber-optic cables—designed to optimize ground-to-cable coupling at the near surface—for strain determination along entire lengths of vertical boreholes. We proposed a novel criterion for soil–cable coupling evaluation based on the geotechnical bearing capacity theory. We applied this enhanced methodology to monitor groundwater-related vertical motions in both laboratory and field experiments. Corroborating extensometer recordings, acquired simultaneously, validated fiber optically determined displacements, suggesting microanchored DSS as an improved means for detecting and monitoring shallow subsurface strain profiles.


Sign in / Sign up

Export Citation Format

Share Document