Revised heating degree days due to global warming for 15 major cities of South Korea

2011 ◽  
Vol 32 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Sung-Hwan Cho ◽  
Hyeong-Jung Kim ◽  
M Zaheeruddin

Because of the rapid rise in ambient temperatures in urban cities due to global warming, this research study was conducted to revise the heating degree days (HDDs) for main cities of South Korea. Current HDDs used in the design of heating systems were established some 30 years ago. Therefore, there is a need to revisit and revise the HDDs used in Korea. The HDDs were computed at five different indoor set-point and unloaded temperatures. The validity of the methodology used for computing HDDs was ascertained by comparing the calculated HDDs with the published values. The impact of the length of time on total annual HDDs was examined. The results show that higher temperature trends due to global warming witnessed over the past decade in general decreased the HDDs. The impact was higher for warmer climate cities than the cold regions. The revised annual HDDs for 15 major cities of South Korea are presented in this paper. Practical applications: The HDDs corrected for global warming effects for 15 major cities of South Korea presented in this article are useful for designers in estimating the impact on equipment size and energy consumption. Towards this end, several scenarios of global warming effects are presented by assuming several unloaded temperature levels. This is useful for the designers in examining the uncertainties in the estimation of energy consumption. The results published are also important for policy makers in South Korea to examine the need for revising the degree day database in light of the global warming trends.

2015 ◽  
Vol 16 (SE) ◽  
pp. 531-538
Author(s):  
Adel Ataei Karizi ◽  
Mahjoobeh Noohi Bezenjani

Today, the environment, optimizing energy consumption and sustainable development have become the most important issues at the international level. Increasing population growth has disastrous effects on Earth's natural habitats and issues such as general global warming, increase in greenhouse gases in the atmosphere that cause global warming, air, water and soil pollution all lead to irresponsible consumption of energy. This paper tries to evaluate sustainable patterns in warm and dry areas that with the climate analysis and contemporary comparison of design in hot and dry climate while clarifying various aspects, explain the impact of environmental factors in the formation of sustainable architecture and the use of applied patterns to design a sustainable architecture. It have been used analytical method, as well as library and documentary research in this study.


Author(s):  
Mostafa Jafari ◽  
Pete Smith

Heating Degree Days (HDD), in cases where temperatures are below 18°C, and Cooling Degree Days (CDD), in cases where temperatures are above 21°C, were used as energy consumption indices. During the last half century, mean annual temperatures have increased and as a consequence, CDD in the warm season have increased sharply. In the same time slice, HDD, even in the cool and cold season have declined steadily. The number of monthly and annual total HDD (mean= 1556) are much higher than CDD (mean=400) in the case study area and annual total HDD and CDD have a negative correlation (Pearson correlation = - 0.493; p = 0.001). The deceasing rate of HDD is limited and steady (R2= 0.062, p=0.099), but the increasing rate of CDD in the same time slice is sharp (R2=0.427, p=0.813). This shows that energy consumption patterns have increased sharply, and with available projection scenarios, is projected to increase more rapidly, leading to higher energy costs.


2014 ◽  
Vol 53 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Kyoungmi Lee ◽  
Hee-Jeong Baek ◽  
ChunHo Cho

AbstractIn South Korea, heating degree-days (HDD) and cooling degree-days (CDD) have been widely used as climatic indicators for the assessment of the impact of climate change, but arbitrary or customary base temperatures have been used for calculation of HDD and CDD. The purpose of this study is to determine real base temperatures to accurately calculate HDD and CDD for South Korea, using monthly electric energy consumption and mean temperature data from 2001 to 2010. The results reveal that the regional electricity demand generally depends on air temperature in a V-shaped curve in urban settings but in an L-shaped curve in rural settings, indicating that the sensitivity of the electricity demand to the temperature change is affected by the size of cities. The South Korean regional base temperatures, defined by a piecewise linear regression method, range from 14.7° to 19.4°C. These results suggest that the assessment of climate change impacts on the energy sector in South Korea should be carried out on a regional scale.


2021 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Hassan Bazazzadeh ◽  
Adam Nadolny ◽  
Seyedeh Sara Hashemi Safaei

The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.


2019 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Paolo Iora ◽  
Laura Tribioli

In this paper, a general quasi-steady backward-looking model for energy consumption estimation of electric vehicles is presented. The model is based on a literature review of existing approaches and was set up using publicly available data for Nissan Leaf. The model has been used to assess the effect of ambient temperature on energy consumption and range, considering various reference driving cycles. The results are supported and validated using data available from an experimental campaign where the Nissan Leaf was driven to depletion across a broad range of winter ambient temperatures. The effect of ambient temperature and the consequent accessories consumption due to cabin heating are shown to be remarkable. For instance, in case of Federal Urban Driving Schedule (FUDS), simplified FUDS (SFUDS), and New European Driving Cycle (NEDC) driving cycles, the range exceeds 150 km at 20 °C, while it reduces to about 85 km and 60 km at 0 °C and −15 °C, respectively. Finally, a sensitivity analysis is reported to assess the impact of the hypotheses in the battery model and of making different assumptions on the regenerative braking efficiency.


2018 ◽  
Vol 244 ◽  
pp. 03002 ◽  
Author(s):  
Iwona Rybicka ◽  
Ondrej Stopka ◽  
Vladimír Ľupták ◽  
Mária Chovancová ◽  
Paweł Droździel

At present, the impact of transport on the environment constitutes a serious problem. This mainly concerns energy consumption and production of greenhouse gases (GHG) that via their participation in greenhouse effect intensification contribute to global warming. In this paper, the calculations provided by the EN 16258: 2012 methodology will be applied to two modes of transport: railway and road transport. Subsequently, the methodology will be applied to a case study of a selected nonelectrified railway line in comparison with parallel road transport. In particular, energy consumption and production of greenhouse gases will be monitored depending on traveling the distance between selected cities in the Czech Republic.


2016 ◽  
Vol 38 (3) ◽  
pp. 327-350 ◽  
Author(s):  
Madhavi Indraganti ◽  
Djamel Boussaa

Saudi Arabia’s energy consumption is increasing astronomically. Saudi Building Code prescribes a fixed base temperature of 18.3℃ to estimate the heating degree-days and cooling degree-days. Using historical meteorological data (2005–2014), this article presents the heating degree-days and cooling degree-days estimated for the representative cities in all the five inhabited climatic zones of Saudi Arabia. We used the base temperatures of 14℃, 16℃ and 18℃ for heating degree-days, and 18℃, 20℃, 22℃, 24℃ and 28℃ for cooling degree-days for Dhahran, Guriat, Jeddah, Khamis Mushait and Riyadh cities. We developed multiple regression models for heating degree-days and cooling degree-days at various base temperatures for these zones. Degree-days for other cities in similar climates with limited input data can be computed with these. Lowering of base temperature by 2 K from 18℃ reduced the heating degree-days by 33–65%. At 14℃ of base temperature, the heating requirement reduced by 60–95%. Elevating the base temperature by 2 K from 18℃ lowered the cooling degree-days by 16–38%. At 28℃ of base temperature cooling can be completely eliminated in Khamis Mushait, and reduced by 65–92% in other cities. This observation merits rethinking about use of appropriate base temperatures that properly link the outdoor environment to reduce the energy consumption. Practical application: Using historical data, we developed regression models for predicting heating and cooling degree-days for five cities of Saudi Arabia in various climate zones without the historic data. Using these, we can estimate the changes in heating/cooling load due to the variation in base temperatures. For example, lowering base temperature by 2–4 K from 18℃ reduces the HDDs by 33–95% and elevating the base temperature by 2–4 K from 18℃ lowered the CDDs by 16–68%.


Author(s):  
Mostafa Jafari ◽  
Pete Smith

Heating degree days (HDD), in cases where temperatures are below 18°C, and cooling degree days (CDD), in cases where temperatures are above 21°C, were used as energy consumption indices. During the last half century, mean annual temperatures have increased, and as a consequence, CDD in the warm season have increased sharply. In the same time slice, HDD even in the cool and cold season have declined steadily. The number of monthly and annual total HDD (mean= 1556) are much higher than CDD (mean=400) in the case study area, and annual total HDD and CDD have a negative correlation (Pearson correlation = - 0.493; p = 0.001). The deceasing rate of HDD is limited and steady (R2= 0.062, p=0.099), but the increasing rate of CDD in the same time slice is sharp (R2=0.427, p=0.813). This shows that energy consumption patterns have increased sharply, and with available projection scenarios, it is projected to increase more rapidly, leading to higher energy costs.


2013 ◽  
Vol 278-280 ◽  
pp. 165-168
Author(s):  
Yan Hui Jiao

In AC industry chilled water storage (CWS) systems are one form of cool thermal storage technology that can be used to time shift the electrical load of the system from the peak day periods to off peak night time periods. In this paper the data for the actual exported and generated electrical energy obtained for the power stations has been used to estimate the electrical energy consumption and the peak electrical load of AC systems. Since the chiller in an air cooled AC system represent more than 75% of the total electrical power consumed by an AC system during the peak demand period, the impact of using CWS systems with alternative operating strategies including partial(load leveling ),partial (demand limiting) and full load has been investigated. In our conclusions we estimate that approximately 45% of the total annual exported electrical energy is consumed solely by AC systems as a result of the very high ambient temperatures. Furthermore, it is estimated AC systems represent about 62% of the peak electrical load. The results demonstrate that CWS can reduce the peak electrical load of a chiller in an air cooled AC system by up to 100% and reduce the nominal chiller size by up to 33% depending up on the operating strategy adopted. This is achieved with only a 4% increase in power consumption of the chiller for all CWS strategies except for full storage where the energy consumption actually decreases by approximately 4%.


Sign in / Sign up

Export Citation Format

Share Document