Doppler Radar Measurements of Spatial Turbulence Intensity in the Atmospheric Boundary Layer

2019 ◽  
Vol 58 (7) ◽  
pp. 1535-1555 ◽  
Author(s):  
James B. Duncan ◽  
Brian D. Hirth ◽  
John L. Schroeder

AbstractRemote sensing instruments that scan have the ability to provide high-resolution spatial measurements of atmospheric boundary layer winds across a region. However, the time required to collect the volume of measurements used to produce this spatial representation of atmospheric winds typically limits the extraction of atmospheric turbulence information using traditional temporal analysis techniques. To overcome this constraint, a spatial turbulence intensity (STI) metric was developed to quantify atmospheric turbulence intensity (TI) through analysis of spatial wind field variability. The methods used to determine STI can be applied throughout the measurement domain to transform the spatially distributed velocity fields to analogous measurement maps of STI. This method enables a comprehensive spatial characterization of atmospheric TI. STI efficacy was examined across a range of wind speeds and atmospheric stability regimes using both single- and dual-Doppler measurements. STI demonstrated the ability to capture rapid fluctuations in TI and was able to discern large-scale TI trends consistent with the early evening transition. The ability to spatially depict atmospheric TI could benefit a variety of research disciplines such as the wind energy industry, where an understanding of wind plant complex flow spatiotemporal variability is limited.

2019 ◽  
pp. 0309524X1988092
Author(s):  
Mohamed Marouan Ichenial ◽  
Abdellah El-Hajjaji ◽  
Abdellatif Khamlichi

The assessment of climatological site conditions, airflow characteristics, and the turbulence affecting wind turbines is an important phase in developing wake engineering models. A method of modeling atmospheric boundary layer structure under atmospheric stability effects is crucial for accurate evaluation of the spatial scale of modern wind turbines, but by themselves, they are incapable to account for the varying large-scale weather conditions. As a result, combining lower atmospheric models with mesoscale models is required. In order to realize a reasonable approximation of initial atmospheric inflow condition used for wake identification behind an NREL 5-MW wind turbine, different vertical wind profile models on equilibrium conditions are tested and evaluated in this article. Wind farm simulator solvers require massive computing resources and forcing mechanisms tendencies inputs from weather forecast models. A three-dimensional Flow Redirection and Induction in Steady-state engineering model was developed for simulating and optimizing the wake losses of different rows of wind turbines under different stability stratifications. The obtained results were compared to high-fidelity simulation data generated by the famous Simulator for Wind Farm Applications. This work showed that a significant improvement related to atmospheric boundary layer structure can be made to develop accurate engineering wake models in order to reduce wake losses.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1619
Author(s):  
Yingsai Ma ◽  
Xianhong Meng ◽  
Yinhuan Ao ◽  
Ye Yu ◽  
Guangwei Li ◽  
...  

The Loess Plateau is one land-atmosphere coupling hotspot. Soil moisture has an influence on atmospheric boundary layer development under specific early-morning atmospheric thermodynamic structures. This paper investigates the sensitivity of atmospheric convection to soil moisture conditions over the Loess Plateau in China by using the convective triggering potential (CTP)—humidity index (HIlow) framework. The CTP indicates atmospheric stability and the HIlow indicates atmospheric humidity in the low-level atmosphere. By comparing the model outcomes with the observations, the one-dimensional model achieves realistic daily behavior of the radiation and surface heat fluxes and the mixed layer properties with appropriate modifications. New CTP-HIlow thresholds for soil moisture-atmosphere feedbacks are found in the Loess Plateau area. By applying the new thresholds with long-time scales sounding data, we conclude that negative feedback is dominant in the north and west portion of the Loess Plateau; positive feedback is predominant in the south and east portion. In general, this framework has predictive significance for the impact of soil moisture on precipitation. By using this new CTP-HIlow framework, we can determine under what atmospheric conditions soil moisture can affect the triggering of precipitation and under what atmospheric conditions soil moisture has no influence on the triggering of precipitation.


2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


Author(s):  
M. T. Schobeiri ◽  
K. Pappu ◽  
L. Wright

The unsteady boundary layer behavior on a turbine cascade is experimentally investigated and the results are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, three different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity, turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity.


Author(s):  
Dezhi Wei ◽  
Decheng Wan

Abstract Turbine-wake interactions among wind turbine array significantly affect the efficiency of wind farms. Yaw angle control is one of the potential ways to increase the total power generation of wind plants, but the sensitivity of such control strategy to atmospheric stability is rarely studied. In the present work, large-eddy simulation of a two-turbine configuration under convective atmospheric boundary layer is performed, with different yaw angles for the front one, the effect of turbine induced forces on the flow field is modeled by actuator line. Emphasis is placed on wake characteristics and aerodynamic performance. Simulation results reveal that atmospheric stability has a considerable impact on the behavior of wind turbine, wake deflection on the horizontal hub height plane for yawed wind turbine is relatively small, compared with the result of the empirical wake model proposed for wind turbine operating in the neutral stratification, which is attributed to the higher ambient turbulence intensity and large variance of wind direction in the convective condition. And associated with the smaller wake deflection, the total power production does not increase as expected when yawing the upstream turbine. In addition, due to the existence of great quantities of disorganized coherent turbulent structures in the unstable condition, the yaw bearing moment experienced by the downstream wind turbine increases dramatically, even if the rotor plane of the first turbine is perpendicular to the inflow direction.


2012 ◽  
Vol 12 (13) ◽  
pp. 5827-5839 ◽  
Author(s):  
B. Chen ◽  
X. D. Xu ◽  
S. Yang ◽  
T. L. Zhao

Abstract. The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significant impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over these regions, particularly from a climatological perspective, remain an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August) from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from NCEP/NCAR Global Forecast System, all the TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i) 38% from the region between tropical Western Pacific region and South China Seas (WP) (ii) 21% from Bay of Bengal and South Asian subcontinent (BOB), and (iii) 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB). Controlled by the different patterns of atmospheric circulation, the air masses originated from these three source regions are transported along the different tracks into the TL. The spatial distributions of three source regions keep similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents r-range from 1 to 7 weeks contributing up to 60–70% of the overall TST, whereas the transport governed by the deep convection overshooting become faster on a timescales of 1–2 days with the contributions of 20–30%. These results provide clear policy implications for the control of very short lived substances, especially for the source regions over Indian subcontinent with increasing populations and developing industries.


Sign in / Sign up

Export Citation Format

Share Document