scholarly journals Understanding How Complex Terrain Impacts Tornado Dynamics Using a Suite of High-Resolution Numerical Simulations

2020 ◽  
Vol 77 (10) ◽  
pp. 3277-3300
Author(s):  
Martin A. Satrio ◽  
David J. Bodine ◽  
Anthony E. Reinhart ◽  
Takashi Maruyama ◽  
Franklin T. Lombardo

AbstractA simulated vortex within a large-eddy simulation is subjected to various surface terrain, implemented through the immersed boundary method, to analyze the effects of complex topography on vortex behavior. Thirty simulations, including a control with zero-height terrain, are grouped into four categories—2D sinusoidal hills, 3D hills, valleys, and ridges—with slight modifications within each category. A medium-swirl-ratio vortex is translated over shallow terrain, which is modest in size relative to the vortex core diameter and with no explicitly defined surface roughness. While domain size restricts results to the very near-field effects of terrain, vortex–terrain interaction yields notable results. Terrain influences act to increase the variability of the near-surface vortex, including a notable leftward (rightward) deflection, acceleration (deceleration), and an expansion (a contraction) of the vortex as it ascends (descends) the terrain owing to changes in the corner flow swirl ratio. Additionally, 10-m track analyses show stronger horizontal wind speeds are found 1) on upslope terrain, resulting from transient subvortices that are more intense compared to the control simulation, and 2) in between adjacent hills simultaneous with strong pressure perturbations that descend from aloft. Composite statistics confirm that the region in between adjacent hills has the strongest horizontal wind speeds, while upward motions are more intense during ascent. Overall, valley (ridge) simulations have the largest horizontal (vertically upward) wind speeds. Last, horizontal and vertical wind speeds are shown to be affected by other terrain properties such as slope steepness and two-dimensionality of the terrain.

2019 ◽  
Vol 147 (4) ◽  
pp. 1215-1235 ◽  
Author(s):  
Nathan Snook ◽  
Ming Xue ◽  
Youngsun Jung

Abstract An ensemble of 10 forecasts is produced for the 20 May 2013 Newcastle–Moore EF5 tornado and its parent supercell using a horizontal grid spacing of 50 m, nested within ensemble forecasts with 500-m horizontal grid spacing initialized via ensemble Kalman filter data assimilation of surface and radar observations. Tornadic circulations are predicted in all members, though the intensity, track, and longevity of the predicted tornado vary substantially among members. Overall, tornadoes in the ensemble forecasts persisted longer and moved to the northeast faster than the observed tornado. In total, 8 of the 10 ensemble members produce tornadoes with winds corresponding to EF2 intensity or greater, with maximum instantaneous near-surface horizontal wind speeds of up to 130 m s−1 and pressure drops of up to 120 hPa; values similar to those reported in observational studies of intense tornadoes. The predicted intense tornadoes all acquire well-defined two-cell vortex structure, and exhibit features common in observed tornadic storms, including a weak-echo notch and low reflectivity within the mesocyclone. Ensemble-based probabilistic tornado forecasts based upon near-surface wind and/or vorticity fields at 10 m above the surface produce skillful forecasts of the tornado in terms of area under the relative operating characteristic curve, with probability swaths extending along and to the northeast of the observed tornado path. When probabilistic swaths of 0–3- and 2–5-km updraft helicity are compared to the swath of wind at 10 m above the surface exceeding 29 m s−1, a slight northwestward bias is present, although the pathlength, orientation, and the placement of minima and maxima show very strong agreement.


2016 ◽  
Vol 73 (7) ◽  
pp. 2783-2801 ◽  
Author(s):  
David J. Bodine ◽  
Takashi Maruyama ◽  
Robert D. Palmer ◽  
Caleb J. Fulton ◽  
Howard B. Bluestein ◽  
...  

Abstract Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation. Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg−1, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg−1). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%–60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.


2020 ◽  
Vol 59 (4) ◽  
pp. 769-789 ◽  
Author(s):  
Md. Rafsan Nahian ◽  
Amir Nazem ◽  
Manoj K. Nambiar ◽  
Ryan Byerlay ◽  
Shohel Mahmud ◽  
...  

AbstractThe performance of the Weather Research and Forecasting (WRF) Model is evaluated in predicting the meteorological conditions over a complex open-pit mining facility in northern Canada in support of more accurate operational reporting of area-fugitive greenhouse gas emission fluxes from such facilities. WRF is studied in a series of sensitivity tests by varying topography, land use, and horizontal and vertical grid spacings to arrive at optimum configurations for reducing modeling biases in comparison with field meteorological observations. Overall, WRF shows a better performance when accounting for the mine topography and modified land use. As a result, the model biases reduce from 1.10 to 0.08 m s−1, from 1.04 to 0.50 m s−1, from 0.98 to 0.32 K, and from 45.7 to 17.3 W m−2, for near-surface wind speed, boundary layer wind speed, near-surface potential temperature, and turbulent sensible heat flux, respectively. Refining the model horizontal and vertical grid spacings results in bias reductions from 3.31 to 0.08 and from 0.80 to −0.11 m s−1 for near-surface and boundary layer wind speeds, respectively. The simulation results also agree with previous observations of meteorological effects on enclosed Earth depressions, characterized by formation of a cool pool of air, reduced wind speeds, and horizontal wind circulations at the bottom of the depression under thermally stable conditions. The results suggest that such configurations for WRF are necessary to arrive at more accurate meteorological predictions over complex open-pit mining terrains with similar features.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2018 ◽  
Vol 48 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Brodie Pearson

AbstractThis study shows that the presence of Stokes drift us in the turbulent upper ocean induces a near-surface Eulerian current that opposes the Stokes drift. This current is distinct from previously studied anti-Stokes currents because it does not rely on the presence of planetary rotation or mean lateral gradients. Instead, the anti-Stokes flow arises from an interaction between the Stokes drift and turbulence. The new anti-Stokes flow is antiparallel to us near the ocean surface, is parallel to us at depth, and integrates to zero over the depth of the boundary layer. The presence of Stokes drift in large-eddy simulations (LES) is shown to induce artificial energy production caused by a combination of the new anti-Stokes flow and LES numerics. As a result, care must be taken when designing and interpreting simulations of realistic wave forcing, particularly as rotation becomes weak and/or us becomes perpendicular to the surface wind stress. The mechanism of the artificial energy production is demonstrated for a generalized LES subgrid scheme.


Author(s):  
Tobias Kukulka ◽  
Todd Thoman

AbstractDispersion processes in the ocean surface boundary layer (OSBL) determine marine material distributions such as those of plankton and pollutants. Sheared velocities drive shear dispersion, which is traditionally assumed to be due to mean horizontal currents that decrease from the surface. However, OSBL turbulence supports along-wind jets; located in near-surface convergence and downwelling regions, such turbulent jets contain strong local shear. Through wind-driven idealized and large eddy simulation (LES) models of the OSBL, this study examines the role of turbulent along-wind jets in dispersing material. In the idealized model, turbulent jets are generated by prescribed cellular flow with surface convergence and associated downwelling regions. Numeric and analytic model solutions reveal that horizontal jets substantially contribute to along-wind dispersion for sufficiently strong cellular flows and exceed contributions due to vertical mean shear for buoyant surface-trapped material. However, surface convergence regions also accumulate surface-trapped material, reducing shear dispersion by jets. Turbulence resolving LES results of a coastal depth-limited ocean agree qualitatively with the idealized model and reveal long-lived coherent jet structures that are necessary for effective jet dispersion. These coastal results indicate substantial jet contributions to along-wind dispersion. However, jet dispersion is likely less effective in the open ocean because jets are shorter lived, less organized, and distorted due to spiraling Ekman currents.


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


Sign in / Sign up

Export Citation Format

Share Document