scholarly journals Cloud Feedbacks in the Climate System: A Critical Review

2005 ◽  
Vol 18 (2) ◽  
pp. 237-273 ◽  
Author(s):  
Graeme L. Stephens

Abstract This paper offers a critical review of the topic of cloud–climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet’s hydrological cycle to climate radiative forcings. The paper provides a brief overview of the effects of clouds on the radiation budget of the earth–atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative–convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global–time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests that progress in understanding climate feedback will require development of alternative methods of analysis. It has been argued that, in view of the complex nature of the climate system, and the cumbersome problems encountered in diagnosing feedbacks, understanding cloud feedback will be gleaned neither from observations nor proved from simple theoretical argument alone. The blueprint for progress must follow a more arduous path that requires a carefully orchestrated and systematic combination of model and observations. Models provide the tool for diagnosing processes and quantifying feedbacks while observations provide the essential test of the model’s credibility in representing these processes. While GCM climate and NWP models represent the most complete description of all the interactions between the processes that presumably establish the main cloud feedbacks, the weak link in the use of these models lies in the cloud parameterization imbedded in them. Aspects of these parameterizations remain worrisome, containing levels of empiricism and assumptions that are hard to evaluate with current global observations. Clearly observationally based methods for evaluating cloud parameterizations are an important element in the road map to progress. Although progress in understanding the cloud feedback problem has been slow and confused by past analysis, there are legitimate reasons outlined in the paper that give hope for real progress in the future.

2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.


2013 ◽  
Vol 26 (17) ◽  
pp. 6561-6574 ◽  
Author(s):  
Daniel R. Feldman ◽  
Daniel M. Coleman ◽  
William D. Collins

Abstract Top-of-atmosphere radiometric signals associated with different high- and low-cloud–radiative feedbacks have been examined through the use of an observing system simulation experiment (OSSE). The OSSE simulates variations in the spectrally resolved and spectrally integrated signals that are due to a range of plausible feedbacks of the climate system when forced with CO2 concentrations that increase at 1% yr−1. This initial version of the OSSE is based on the Community Climate System Model, version 3 (CCSM3), and exploits the fact that CCSM3 exhibits different cloud feedback strengths for different model horizontal resolutions. In addition to the conventional broadband shortwave albedos and outgoing longwave fluxes, a dataset of shortwave spectral reflectance and longwave spectral radiance has been created. These data have been analyzed to determine simulated satellite instrument signals of poorly constrained cloud feedbacks for three plausible realizations of Earth's climate system produced by CCSM3. These data have been analyzed to estimate the observational record length of albedo, outgoing longwave radiation, shortwave reflectance, or longwave radiance required to differentiate these dissimilar Earth system realizations. Shortwave spectral measurements in visible and near-infrared water vapor overtone lines are best suited to differentiate model results, and a 33% difference in shortwave–cloud feedbacks can be detected with 20 years of continuous measurements. Nevertheless, at most latitudes and with most wavelengths, the difference detection time is more than 30 years. This suggests that observing systems of sufficiently stable calibration would be useful in addressing the contribution of low clouds to the spread of climate sensitivities currently exhibited by the models that report to the Intergovernmental Panel on Climate Change (IPCC).


2017 ◽  
Vol 10 (1) ◽  
pp. 359-384 ◽  
Author(s):  
Mark J. Webb ◽  
Timothy Andrews ◽  
Alejandro Bodas-Salcedo ◽  
Sandrine Bony ◽  
Christopher S. Bretherton ◽  
...  

Abstract. The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?


2019 ◽  
Vol 5 (4) ◽  
pp. 282-295 ◽  
Author(s):  
Richard G. Williams ◽  
Anna Katavouta ◽  
Philip Goodwin

AbstractClimate change involves a direct response of the climate system to forcing which is amplified or damped by feedbacks operating in the climate system. Carbon-cycle feedbacks alter the land and ocean carbon inventories and so act to reduce or enhance the increase in atmospheric CO2 from carbon emissions. The prevailing framework for carbon-cycle feedbacks connect changes in land and ocean carbon inventories with a linear sum of dependencies on atmospheric CO2 and surface temperature. Carbon-cycle responses and feedbacks provide competing contributions: the dominant effect is that increasing atmospheric CO2 acts to enhance the land and ocean carbon stores, so providing a negative response and feedback to the original increase in atmospheric CO2, while rising surface temperature acts to reduce the land and ocean carbon stores, so providing a weaker positive feedback for atmospheric CO2. The carbon response and feedback of the land and ocean system may be expressed in terms of a combined carbon response and feedback parameter, λcarbon in units of W m− 2K− 1, and is linearly related to the physical climate feedback parameter, λclimate, revealing how carbon and climate responses and feedbacks are inter-connected. The magnitude and uncertainties in the carbon-cycle response and feedback parameter are comparable with the magnitude and uncertainties in the climate feedback parameter from clouds. Further mechanistic insight needs to be gained into how the carbon-cycle feedbacks are controlled for the land and ocean, particularly to separate often competing effects from changes in atmospheric CO2 and climate forcing.


2016 ◽  
Vol 29 (18) ◽  
pp. 6659-6675 ◽  
Author(s):  
A. Gettelman ◽  
L. Lin ◽  
B. Medeiros ◽  
J. Olson

Abstract Aerosols can influence cloud radiative effects and, thus, may alter interpretation of how Earth’s radiative budget responds to climate forcing. Three different ensemble experiments from the same climate model with different greenhouse gas and aerosol scenarios are used to analyze the role of aerosols in climate feedbacks and their spread across initial condition ensembles of transient climate simulations. The standard deviation of global feedback parameters across ensemble members is low, typically 0.02 W m−2 K−1. Feedbacks from high (8.5 W m−2) and moderate (4.5 W m−2) year 2100 forcing cases are nearly identical. An aerosol kernel is introduced to remove effects of aerosol cloud interactions that alias into cloud feedbacks. Adjusted cloud feedbacks indicate an “aerosol feedback” resulting from changes to climate that increase sea-salt emissions, mostly in the Southern Ocean. Ensemble simulations also indicate higher tropical cloud feedbacks with higher aerosol loading. These effects contribute to a difference in cloud feedbacks of nearly 50% between ensembles of the same model. These two effects are also seen in aquaplanet simulations with varying fixed drop number. Thus aerosols can be a significant modifier of cloud feedbacks, and different representations of aerosols and their interactions with clouds may contribute to multimodel spread in climate feedbacks and climate sensitivity in multimodel archives.


2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.


2021 ◽  
Author(s):  
Jennifer Kay

<p>Understanding the influence of clouds and precipitation on global warming remains an important unsolved research problem. This talk presents an overview of this topic, with a focus on recent observations, theory, and modeling results for polar clouds. After a general introduction, experiments that disable cloud radiative feedbacks or “lock the clouds” within a state‐of‐the‐art,  well‐documented, and observationally vetted climate model will be presented. Through comparison of idealized greenhouse warming experiments with and without cloud locking, the sign and magnitude cloud feedbacks can be quantified. Global cloud feedbacks increase both global and Arctic warming by around 25%. In contrast, disabling Arctic cloud feedbacks has a negligible influence on both Arctic and global surface warming. Do observations and theory support a positive global cloud feedback and a weak Arctic cloud feedback?  How does precipitation affect polar cloud feedbacks? What are the implications especially for climate change in polar regions?  </p>


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Qing Zhou ◽  
Yong Zhang ◽  
Shuze Jia ◽  
Junli Jin ◽  
Shanshan Lv ◽  
...  

Clouds are significant in the global radiation budget, atmospheric circulation, and hydrological cycle. However, knowledge regarding the observed climatology of the cloud vertical structure (CVS) over Beijing is still poor. Based on high-resolution radiosonde observations at Beijing Nanjiao Weather Observatory (BNWO) during the period 2010–2017, the method for identifying CVS depending on height-resolved relative humidity thresholds is improved, and CVS estimation by radiosonde is compared with observations by millimeter-wave cloud radar and ceilometer at the same site. Good consistency is shown between the three instruments. Then, the CVS climatology, including the frequency distribution and seasonal variation, is investigated. Overall, the occurrence frequency (OF) of cloudy cases in Beijing is slightly higher than that of clear-sky cases, and the cloud OF is highest in summer and lowest in winter. Single-layer clouds and middle-level clouds are dominant in Beijing. In addition, the average cloud top height (CTH), cloud base height (CBH), and cloud thickness in Beijing are 6.2 km, 4.0 km, and 2.2 km, respectively, and show the trend of reaching peaks in spring and minimums in winter. In terms of frequency distribution, the CTH basically resides below an altitude of 16 km, and approximately 43% of the CBHs are located at altitudes of 0.5–1.5 km. The cloud OF has only one peak located at altitudes of 4–8 km in spring, whereas it shows a trimodal distribution in other seasons. The height at which the cloud OF reaches its peak is highest in summer and lowest in winter. To the best of our knowledge, the cloud properties analyzed here are the first to elucidate the distribution and temporal variation of the CVS in Beijing from a long-term sounding perspective, and these results will provide a scientific observation basis for improving the atmospheric circulation model, as well as comparisons and verifications for measurements by ground-based remote sensing equipment.


Sign in / Sign up

Export Citation Format

Share Document