scholarly journals The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the Brewer–Dobson Circulation: An Analysis of MSU and SSU Data

2011 ◽  
Vol 24 (23) ◽  
pp. 6243-6258 ◽  
Author(s):  
Paul J. Young ◽  
David W. J. Thompson ◽  
Karen H. Rosenlof ◽  
Susan Solomon ◽  
Jean-François Lamarque

Abstract Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the Brewer–Dobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU). While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: December–March in the Northern Hemisphere and July–October in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere. The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. Mid- to upper-stratospheric temperatures also exhibit a distinct but small semiannual cycle at extratropical latitudes.

2012 ◽  
Vol 25 (5) ◽  
pp. 1759-1772 ◽  
Author(s):  
Paul J. Young ◽  
Karen H. Rosenlof ◽  
Susan Solomon ◽  
Steven C. Sherwood ◽  
Qiang Fu ◽  
...  

Seasonally and vertically resolved changes in the strength of the Brewer–Dobson circulation (BDC) were inferred using temperatures measured by the Microwave Sounding Unit (MSU), Stratospheric Sounding Unit (SSU), and radiosondes. Linear trends in an empirically derived “BDC index” (extratropical minus tropical temperatures), over 1979–2005, were found to be consistent with a significant strengthening of the Northern Hemisphere (NH) branch of the BDC during December throughout the depth of the stratosphere. Trends in the same index suggest a significant strengthening of the Southern Hemisphere branch of the BDC during August through to the midstratosphere, as well as a significant weakening during March in the NH lower stratosphere. Such trends, however, are only significant if it is assumed that interannual variability due to the BDC can be removed by regression of the tropics against the extratropics and vice versa (i.e., exploiting the out-of-phase nature of tropical and extratropical temperatures as demonstrated by previous studies of temperature and the BDC). The possibility that the apparent lower-stratosphere BDC December strengthening and March weakening could point to a change in the seasonal cycle of the circulation is also explored. The differences between a 1979–91 average and 1995–2005 average tropical temperature seasonal cycle in lower-stratospheric MSU data show an apparent shift in the minimum from February to January, consistent with a change in the timing of the maximum wave driving. Additionally, the importance of decadal variability in shaping the overall trends is highlighted, in particular for the suggested March BDC weakening, which may now be strengthening from a minimum in the 1990s.


1994 ◽  
Vol 12 (5) ◽  
pp. 448-456 ◽  
Author(s):  
K. Mohanakumar

Abstract. A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E), located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME) satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.


2015 ◽  
Vol 72 (3) ◽  
pp. 1261-1275 ◽  
Author(s):  
William J. Randel ◽  
Fei Wu

Abstract Variability in tropical zonal mean temperatures over 10–30 km is analyzed based on high-quality, high-vertical-resolution GPS temperature measurements covering 2001–13. The observations are used to quantify variability spanning time scales of weeks to over a decade, with focus on behavior of the tropopause region and coupling with the upper troposphere and stratosphere. Large variations associated with the seasonal cycle, quasi-biennial oscillation (QBO), and El Niño–Southern Oscillation (ENSO) are isolated and removed, and residual time series are analyzed using principal components and spectrum analysis. The residual temperature exhibits maximum variance in the lower stratosphere, with a vertical structure similar to the seasonal cycle. Residual temperatures exhibit two dominant modes of variability: a “deep stratosphere mode” tied to high-latitude planetary wave forcing and a shallow “near-tropopause mode” linked to dynamically forced upwelling near the tropopause. Variations in the cold point tropopause (and by inference in global stratospheric water vapor) are closely tied to the near-tropopause mode. These coherent temperature patterns provide further evidence of distinct upper and lower branches of the tropical Brewer–Dobson circulation. Zonal mean temperatures in the lower stratosphere and near the cold point are most strongly coupled to the upper troposphere on time scales of ~(30–60) days, probably linked to the Madden–Julian oscillation (MJO). Enhanced temperature variance near the tropopause is consistent with the long radiative relaxation time scales in the lower stratosphere, which makes this region especially sensitive to low-frequency dynamical forcing.


2012 ◽  
Vol 25 (21) ◽  
pp. 7442-7466 ◽  
Author(s):  
N. J. Burls ◽  
C. J. C Reason ◽  
P. Penven ◽  
S. G. Philander

Sea surface temperature in the central-eastern equatorial Atlantic has a seasonal cycle far bigger than that of the Pacific, but interannual anomalies smaller than those of the Pacific. Given the amplitude of seasonal SST variability, one wonders whether the seasonal cycle in the Atlantic is so dominant that it is able to strongly influence the evolution of its interannual variability. In this study, interannual upper-ocean variability within the tropical Atlantic is viewed from an energetics perspective, and the role of ocean dynamics, in particular the role of ocean memory, within zonal mode events is investigated. Unlike in the Pacific where seasonal and interannual variability involve distinctly different processes, the results suggest that the latter is a modulation of the former in the Atlantic, whose seasonal cycle has similarities with El Niño and La Niña in the Pacific. The ocean memory mechanism associated with the zonal mode appears to operate on much shorter time scales than that associated with the El Niño–Southern Oscillation, largely being associated with interannual modulations of a seasonally active delayed negative feedback response. Differences between the El Niño–Southern Oscillation and the zonal mode can then be accounted for in terms of these distinctions. Anomalous wind power over the tropical Atlantic is shown to be a potential predictor for zonal mode events. However, because zonal mode events are due to a modulation of seasonally active coupled processes, and not independent processes operating on interannual time scales as seen in the Pacific, the lead time of this potential predictability is limited.


2006 ◽  
Vol 19 (6) ◽  
pp. 1013-1031 ◽  
Author(s):  
Galina Chirokova ◽  
Peter J. Webster

Abstract The work in this paper builds upon the relatively well-studied seasonal cycle of the Indian Ocean heat transport by investigating its interannual variability over a 41-yr period (1958–98). An intermediate, two-and-a-half-layer thermodynamically active ocean model with mixed layer physics is used in the investigation. The results of the study reveal that the Indian Ocean heat transport possesses strong variability at all time scales from intraseasonal (10–90 days) to interannual (more than one year). The seasonal cycle dominates the variability at all latitudes, the amplitude of the intraseasonal variability is similar to the seasonal cycle, and the amplitude of the interannual variability is about one-tenth of the seasonal cycle. Spectral analysis shows that a significant broadband biennial component in the interannual variability exists with considerable coherence in sign across the equator. While the mean annual heat transport shows a strong maximum between 10° and 20°S, interannual variability is relatively uniform over a broad latitudinal domain between 15°N and 10°S. The heat transport variability at all time scales is well explained by the Ekman heat transport, with especially good correlations at the intraseasonal time scales. The addition of the Indonesian Throughflow does not significantly affect the heat transport variability in the northern part of the ocean.


2007 ◽  
Vol 64 (12) ◽  
pp. 4479-4488 ◽  
Author(s):  
William J. Randel ◽  
Mijeong Park ◽  
Fei Wu ◽  
Nathaniel Livesey

Abstract Near-equatorial ozone observations from balloon and satellite measurements reveal a large annual cycle in ozone above the tropical tropopause. The relative amplitude of the annual cycle is large in a narrow vertical layer between ∼16 and 19 km, with approximately a factor of 2 change in ozone between the minimum (during NH winter) and maximum (during NH summer). The annual cycle in ozone occurs over the same altitude region, and is approximately in phase with the well-known annual variation in tropical temperature. This study shows that the large annual variation in ozone occurs primarily because of variations in vertical transport associated with mean upwelling in the lower stratosphere (the Brewer–Dobson circulation); the maximum relative amplitude peak in the lower stratosphere is collocated with the strongest background vertical gradients in ozone. A similar large seasonal cycle is observed in carbon monoxide (CO) above the tropical tropopause, which is approximately out of phase with ozone (associated with an oppositely signed vertical gradient). The observed ozone and CO variations can be used to constrain estimates of the seasonal cycle in tropical upwelling.


2007 ◽  
Vol 20 (2) ◽  
pp. 353-374 ◽  
Author(s):  
J. Ballabrera-Poy ◽  
R. Murtugudde ◽  
R-H. Zhang ◽  
A. J. Busalacchi

Abstract The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.


2015 ◽  
Vol 15 (16) ◽  
pp. 22291-22329 ◽  
Author(s):  
C. E. Sioris ◽  
J. Zou ◽  
D. A. Plummer ◽  
C. D. Boone ◽  
C. T. McElroy ◽  
...  

Abstract. Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60–90 and 60–90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = −0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004–2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950–2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.


2018 ◽  
Author(s):  
Marius Hauck ◽  
Frauke Fritsch ◽  
Hella Garny ◽  
Andreas Engel

Abstract. Analysis of stratospheric transport from an observational point of view is frequently realized by evaluation of mean age of air values from long-lived trace gases. However, this provides more insight into general transport strength and less into its mechanism. Deriving complete transit time distributions (age spectra) is desirable, but their deduction from direct measurements is difficult and so far primarily achieved by assumptions about dynamics and spectra themselves. This paper introduces a modified version of an inverse method to infer age spectra from mixing ratios of short-lived trace gases. For a full description of transport seasonality the formulation includes an imposed seasonal cycle to gain multimodal spectra. The EMAC model simulation used for a proof of concept features an idealized dataset of 40 radioactive trace gases with different chemical lifetimes as well as 40 chemically inert pulsed trace gases to calculate pulse age spectra. Annual and seasonal mean inverse spectra are compared to pulse spectra including first and second moments as well as the ratio between them to assess the performance on these time scales. Results indicate that the modified inverse age spectra match the annual and seasonal pulse age spectra well on global scale beyond 1.5 years mean age of air. The imposed seasonal cycle emerges as a reliable tool to include transport seasonality in the age spectra. Below 1.5 years mean age of air, tropospheric influence intensifies and breaks the assumption of single entry through the tropical tropopause, leading to inaccurate spectra in particular in the northern hemisphere. The imposed seasonal cycle wrongly prescribes seasonal entry in this lower region and does not lead to a better agreement between inverse and pulse age spectra without further improvement. As the inverse method aims for future implementation on in situ observational data, possible critical factors for this purpose are delineated finally.


Sign in / Sign up

Export Citation Format

Share Document