scholarly journals Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach

2013 ◽  
Vol 26 (14) ◽  
pp. 4897-4909 ◽  
Author(s):  
Eleanor J. Burke ◽  
Chris D. Jones ◽  
Charles D. Koven

Abstract Under climate change, thawing permafrost may cause a release of carbon, which has a positive feedback on the climate. The permafrost-carbon climate response (γPF) is the additional permafrost-carbon made vulnerable to decomposition per degree of global temperature increase. A simple framework was adopted to estimate γPF using the database for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected changes in the annual maximum active layer thicknesses (ALTmax) over the twenty-first century were quantified using CMIP5 soil temperatures. These changes were combined with the observed distribution of soil organic carbon and its potential decomposability to give γPF. This estimate of γPF is dependent on the biases in the simulated present-day permafrost. This dependency was reduced by combining a reference estimate of the present-day ALTmax with an estimate of the sensitivity of ALTmax to temperature from the CMIP5 models. In this case, γPF was from −6 to −66 PgC K−1(5th–95th percentile) with a radiative forcing of 0.03–0.29 W m−2 K−1. This range is mainly caused by uncertainties in the amount of soil carbon deeper in the soil profile and whether it thaws over the time scales under consideration. These results suggest that including permafrost-carbon within climate models will lead to an increase in the positive global carbon climate feedback. Under future climate change the northern high-latitude permafrost region is expected to be a small sink of carbon. Adding the permafrost-carbon response is likely to change this region to a source of carbon.

2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


2021 ◽  
Vol 12 (2) ◽  
pp. 367-386
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d−1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2020 ◽  
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2020 ◽  
Vol 11 (4) ◽  
pp. 995-1012
Author(s):  
Lukas Brunner ◽  
Angeline G. Pendergrass ◽  
Flavio Lehner ◽  
Anna L. Merrifield ◽  
Ruth Lorenz ◽  
...  

Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected future climate change based on a new generation of climate models. To extract reliable estimates of future warming and related uncertainties from these models, the spread in their projections is often translated into probabilistic estimates such as the mean and likely range. Here, we use a model weighting approach, which accounts for the models' historical performance based on several diagnostics as well as model interdependence within the CMIP6 ensemble, to calculate constrained distributions of global mean temperature change. We investigate the skill of our approach in a perfect model test, where we use previous-generation CMIP5 models as pseudo-observations in the historical period. The performance of the distribution weighted in the abovementioned manner with respect to matching the pseudo-observations in the future is then evaluated, and we find a mean increase in skill of about 17 % compared with the unweighted distribution. In addition, we show that our independence metric correctly clusters models known to be similar based on a CMIP6 “family tree”, which enables the application of a weighting based on the degree of inter-model dependence. We then apply the weighting approach, based on two observational estimates (the fifth generation of the European Centre for Medium-Range Weather Forecasts Retrospective Analysis – ERA5, and the Modern-Era Retrospective analysis for Research and Applications, version 2 – MERRA-2), to constrain CMIP6 projections under weak (SSP1-2.6) and strong (SSP5-8.5) climate change scenarios (SSP refers to the Shared Socioeconomic Pathways). Our results show a reduction in the projected mean warming for both scenarios because some CMIP6 models with high future warming receive systematically lower performance weights. The mean of end-of-century warming (2081–2100 relative to 1995–2014) for SSP5-8.5 with weighting is 3.7 ∘C, compared with 4.1 ∘C without weighting; the likely (66%) uncertainty range is 3.1 to 4.6 ∘C, which equates to a 13 % decrease in spread. For SSP1-2.6, the weighted end-of-century warming is 1 ∘C (0.7 to 1.4 ∘C), which results in a reduction of −0.1 ∘C in the mean and −24 % in the likely range compared with the unweighted case.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


Author(s):  
J. M. Gregory ◽  
T. Andrews ◽  
P. Good

In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO 2 increasing at 1% yr −1 ) during the second doubling of CO 2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO 2 radiative forcing may rise more rapidly than logarithmically with CO 2 concentration. Third, the climate feedback parameter may decline as the CO 2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO 2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.


2020 ◽  
Vol 11 (3) ◽  
pp. 737-750 ◽  
Author(s):  
Femke J. M. M. Nijsse ◽  
Peter M. Cox ◽  
Mark S. Williamson

Abstract. Climate sensitivity to CO2 remains the key uncertainty in projections of future climate change. Transient climate response (TCR) is the metric of temperature sensitivity that is most relevant to warming in the next few decades and contributes the biggest uncertainty to estimates of the carbon budgets consistent with the Paris targets. Equilibrium climate sensitivity (ECS) is vital for understanding longer-term climate change and stabilisation targets. In the IPCC 5th Assessment Report (AR5), the stated “likely” ranges (16 %–84 % confidence) of TCR (1.0–2.5 K) and ECS (1.5–4.5 K) were broadly consistent with the ensemble of CMIP5 Earth system models (ESMs) available at the time. However, many of the latest CMIP6 ESMs have larger climate sensitivities, with 5 of 34 models having TCR values above 2.5 K and an ensemble mean TCR of 2.0±0.4 K. Even starker, 12 of 34 models have an ECS value above 4.5 K. On the face of it, these latest ESM results suggest that the IPCC likely ranges may need revising upwards, which would cast further doubt on the feasibility of the Paris targets. Here we show that rather than increasing the uncertainty in climate sensitivity, the CMIP6 models help to constrain the likely range of TCR to 1.3–2.1 K, with a central estimate of 1.68 K. We reach this conclusion through an emergent constraint approach which relates the value of TCR linearly to the global warming from 1975 onwards. This is a period when the signal-to-noise ratio of the net radiative forcing increases strongly, so that uncertainties in aerosol forcing become progressively less problematic. We find a consistent emergent constraint on TCR when we apply the same method to CMIP5 models. Our constraints on TCR are in good agreement with other recent studies which analysed CMIP ensembles. The relationship between ECS and the post-1975 warming trend is less direct and also non-linear. However, we are able to derive a likely range of ECS of 1.9–3.4 K from the CMIP6 models by assuming an underlying emergent relationship based on a two-box energy balance model. Despite some methodological differences; this is consistent with a previously published ECS constraint derived from warming trends in CMIP5 models to 2005. Our results seem to be part of a growing consensus amongst studies that have applied the emergent constraint approach to different model ensembles and to different aspects of the record of global warming.


2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2020 ◽  
Author(s):  
jiangling hu ◽  
duoying ji

<p>As the land surface warms, a subsequent reduction in snow and ice cover reveals a less reflective surface that absorbs more solar radiation, which further enhances the initial warming. This positive feedback climate mechanism is the snow albedo feedback (SAF), which will exacerbate climate warming and is the second largest contributor to Arctic amplification. Snow albedo feedback will increase the sensitivity of climate change in the northern hemisphere, which affects the accuracy of climate models in simulation research of climate change, and further affects the credibility of future climate prediction results.</p><p>Using the latest generation of climate models from CMIP6 (Coupled Model Intercomparison Project Version 6), we analyze seasonal cycle snow albedo feedback in Northern Hemisphere extratropics. We find that the strongest SAF strength is in spring (mean: -1.34 %K<sup>-1</sup>), second strongest is autumn (mean: -1.01 %K<sup>-1</sup>), the weakest is in summer (mean: -0.18 %K<sup>-1</sup>). Except summer, the SAF strength is approximately 0.15% K<sup>-1</sup> larger than CMIP5 models in the other three seasons. The spread of spring SAF strength (range: -1.09 to -1.37% K<sup>-1</sup>) is larger than CMIP5 models. Oppositely, the spread of summer SAF strength (range: 0.20 to -0.56% K<sup>-1</sup>) is smaller than CMIP5 models. When compared with CMIP5 models, the spread of autumn and winter SAF strength have not changed much.</p>


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Gerhard Krinner ◽  
Viatcheslav Kharin ◽  
Romain Roehrig ◽  
John Scinocca ◽  
Francis Codron

Abstract Climate models and/or their output are usually bias-corrected for climate impact studies. The underlying assumption of these corrections is that climate biases are essentially stationary between historical and future climate states. Under very strong climate change, the validity of this assumption is uncertain, so the practical benefit of bias corrections remains an open question. Here, this issue is addressed in the context of bias correcting the climate models themselves. Employing the ARPEGE, LMDZ and CanAM4 atmospheric models, we undertook experiments in which one centre’s atmospheric model takes another centre’s coupled model as observations during the historical period, to define the bias correction, and as the reference under future projections of strong climate change, to evaluate its impact. This allows testing of the stationarity assumption directly from the historical through future periods for three different models. These experiments provide evidence for the validity of the new bias-corrected model approach. In particular, temperature, wind and pressure biases are reduced by 40–60% and, with few exceptions, more than 50% of the improvement obtained over the historical period is on average preserved after 100 years of strong climate change. Below 3 °C global average surface temperature increase, these corrections globally retain 80% of their benefit.


Sign in / Sign up

Export Citation Format

Share Document