scholarly journals Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during the March–May Long Rains

2014 ◽  
Vol 27 (21) ◽  
pp. 7953-7975 ◽  
Author(s):  
Bradfield Lyon

Abstract This paper provides a review of atmospheric circulation and sea surface temperature (SST) conditions that are associated with meteorological drought on the seasonal time scale in the Greater Horn of Africa (the region 10°S–15°N, 30°–52°E). New findings regarding a post-1998 increase in drought frequency during the March–May (MAM) “long rains” are also reported. The period 1950–2010 is emphasized, although rainfall and SST data from 1901–2010 are used to place the recent long rains decline in a multidecadal context. For the latter case, climate model simulations and isolated basin SST experiments are also utilized. Climatologically, rainfall exhibits a unimodal June–August (JJA) maximum in west-central Ethiopia with a generally bimodal [MAM and October–December (OND) maxima] distribution in locations to the south and east. Emphasis will be on these three seasons. SST anomalies in the tropical Pacific and Indian Oceans show the strongest association with drought during OND in locations having a bimodal annual cycle, with weaker associations during MAM. The influence of the El Niño–Southern Oscillation (ENSO) phenomenon critically depends on its ability to affect SSTs outside the Pacific. Salient features of the anomalous atmospheric circulation during drought events in different locations and seasons are discussed. The post-1998 decline in the long rains is found to be driven strongly (although not necessarily exclusively) by natural multidecadal variability in the tropical Pacific rather than anthropogenic climate change. This conclusion is supported by observational analyses and climate model experiments, which are presented.

2009 ◽  
Vol 22 (1) ◽  
pp. 71-92 ◽  
Author(s):  
W. Park ◽  
N. Keenlyside ◽  
M. Latif ◽  
A. Ströh ◽  
R. Redler ◽  
...  

Abstract A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM’s performance in the tropical Pacific with respect to mean state, annual cycle, and El Niño–Southern Oscillation (ENSO) is described. Additionally, the tropical Pacific response to global warming is studied. Overall, climate drift in a multicentury control integration is small. However, KCM exhibits an equatorial cold bias at the surface of the order 1°C, while strong warm biases of several degrees are simulated in the eastern tropical Pacific on both sides off the equator, with maxima near the coasts. The annual and semiannual cycles are realistically simulated in the eastern and western equatorial Pacific, respectively. ENSO performance compares favorably to observations with respect to both amplitude and period. An ensemble of eight greenhouse warming simulations was performed, in which the CO2 concentration was increased by 1% yr−1 until doubling was reached, and stabilized thereafter. Warming of equatorial Pacific sea surface temperature (SST) is, to first order, zonally symmetric and leads to a sharpening of the thermocline. ENSO variability increases because of global warming: during the 30-yr period after CO2 doubling, the ensemble mean standard deviation of Niño-3 SST anomalies is increased by 26% relative to the control, and power in the ENSO band is almost doubled. The increased variability is due to both a strengthened (22%) thermocline feedback and an enhanced (52%) atmospheric sensitivity to SST; both are associated with changes in the basic state. Although variability increases in the mean, there is a large spread among ensemble members and hence a finite probability that in the “model world” no change in ENSO would be observed.


2020 ◽  
Author(s):  
Mario Rodrigo ◽  
Javier Garcia-Serrano ◽  
Ileana Bladé ◽  
Froila M. Palmeiro ◽  
Bianca Mezzina

<p>The European Consortium EC-EARTH climate model version 3.1 is used to assess the effects of a well-resolved stratosphere on the representation of El Niño-Southern Oscillation (ENSO). Three 100-year  long experiments with fixed radiative forcing representative of the present climate are compared: one with the top at 0.01hPa and 91 vertical levels (HIGH-TOP), another with the top at 5hPa and 62 vertical levels (LOW-TOP), and another high-top experiment with the stratosphere nudged to the climatology of HIGH-TOP from 10hPa upwards (NUDG). The differences in vertical resolution between HIGH-TOP and LOW-TOP start at around 100hPa. This study focuses on the canonical ENSO phenomenon, which is the most important source of variability and predictability on seasonal-to-interannual timescales.</p><p> </p><p>Preliminary results indicate that EC-EARTH realistically simulates the ENSO SST pattern in the tropical Pacific regardless of vertical resolution, although HIGH-TOP (LOW-TOP) overestimates (underestimates) the SST variability during boreal summer (winter). In both configurations, the SST tongue is narrower meridionally and slightly shifted towards the central-western Pacific compared to observations, a common bias of climate models. Resolving the stratosphere has a clear effect on the power spectrum of the Niño3.4 index: as compared to observations where there is a well-known frequency range of 2-7 years, HIGH-TOP and LOW-TOP have a prominent peak centered at 4-5 years but additionally both simulations display another peak, towards higher (~ 2yrs) and lower (~ 7yrs) frequencies, respectively. Another impact of including a well-resolved stratosphere is to systematically enhance the amplitude of the SST, wind and convective anomalies in the tropical Pacific throughout the entire ENSO cycle. Finally, similar differences are obtained when comparing HIGH-TOP and NUDG, suggesting an active role of the tropical stratospheric variability on ENSO.</p>


2006 ◽  
Vol 6 ◽  
pp. 17-21 ◽  
Author(s):  
E. V. Sokolikhina ◽  
E. K. Semenov ◽  
N. N. Sokolikhina

Abstract. For the classification of the synoptic processes in the tropical Pacific using daily data, criteria were proposed for identifying the different evolutional phases of the equatorial westerly wind zone. The criteria are based on the location, extent and activity of the westerly wind zone on the 850 hPa isobaric surface. According to this classification all the observed variants of the westerly wind regime above the tropical Pacific can be divided into three classes: normal, active, and break. For each class one specific pattern of tropical atmospheric circulation centers and divergent wind velocity potential in the lower and upper troposphere are found. Using the singular value decomposition method (SVD) the connection between the atmospheric circulation and sea surface temperature (SST) of equatorial Pacific is investigated.


2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2021 ◽  
Author(s):  
Iñigo Gómara ◽  
Belén Rodríguez-Fonseca ◽  
Elsa Mohino ◽  
Teresa Losada ◽  
Irene Polo ◽  
...  

AbstractTropical Pacific upwelling-dependent ecosystems are the most productive and variable worldwide, mainly due to the influence of El Niño Southern Oscillation (ENSO). ENSO can be forecasted seasons ahead thanks to assorted climate precursors (local-Pacific processes, pantropical interactions). However, owing to observational data scarcity and bias-related issues in earth system models, little is known about the importance of these precursors for marine ecosystem prediction. With recently released reanalysis-nudged global marine ecosystem simulations, these constraints can be sidestepped, allowing full examination of tropical Pacific ecosystem predictability. By complementing historical fishing records with marine ecosystem model data, we show herein that equatorial Atlantic Sea Surface Temperatures (SSTs) constitute a superlative predictability source for tropical Pacific marine yields, which can be forecasted over large-scale areas up to 2 years in advance. A detailed physical-biological mechanism is proposed whereby Atlantic SSTs modulate upwelling of nutrient-rich waters in the tropical Pacific, leading to a bottom-up propagation of the climate-related signal across the marine food web. Our results represent historical and near-future climate conditions and provide a useful springboard for implementing a marine ecosystem prediction system in the tropical Pacific.


2020 ◽  
Vol 16 (2) ◽  
pp. 743-756 ◽  
Author(s):  
Christoph Dätwyler ◽  
Martin Grosjean ◽  
Nathan J. Steiger ◽  
Raphael Neukom

Abstract. The climate of the Southern Hemisphere (SH) is strongly influenced by variations in the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Because of the limited length of instrumental records in most parts of the SH, very little is known about the relationship between these two key modes of variability over time. Using proxy-based reconstructions and last-millennium climate model simulations, we find that ENSO and SAM indices are mostly negatively correlated over the past millennium. Pseudo-proxy experiments indicate that currently available proxy records are able to reliably capture ENSO–SAM relationships back to at least 1600 CE. Palaeoclimate reconstructions show mostly negative correlations back to about 1400 CE. An ensemble of last-millennium climate model simulations confirms this negative correlation, showing a stable correlation of approximately −0.3. Despite this generally negative relationship we do find intermittent periods of positive ENSO–SAM correlations in individual model simulations and in the palaeoclimate reconstructions. We do not find evidence that these relationship fluctuations are caused by exogenous forcing nor by a consistent climate pattern. However, we do find evidence that strong negative correlations are associated with strong positive (negative) anomalies in the Interdecadal Pacific Oscillation and the Amundsen Sea Low during periods when SAM and ENSO indices are of opposite (equal) sign.


2020 ◽  
Vol 33 (24) ◽  
pp. 10653-10670
Author(s):  
M. J. Manton ◽  
Y. Huang ◽  
S. T. Siems

AbstractThe Southern Ocean lies beneath a unique region of the global atmosphere with minimal effects of landmasses on the zonal flow. The absence of landmasses also means that in situ observations of precipitation are limited to a few ocean islands. Two reanalyses and two satellite-based gridded datasets are analyzed to estimate the character of the distribution of precipitation across the region. The latitudinal variation is computed across three longitudinal sectors, representing the Pacific, Atlantic, and Indian Oceans. The most recent ECMWF reanalysis (ERA5) is found to produce the most accurate estimate of the mean profile and seasonal cycle of precipitation. However, there is little consistency in the estimates of trends in monthly anomalies of precipitation. A more consistent description of precipitation trends is found by using linear regression of the precipitation anomaly with the local mean sea level pressure anomaly, the southern annular mode, and the Southern Oscillation index. In broad terms, precipitation is found to be decreasing at lower latitudes and increasing at higher latitudes, which is consistent with earlier climate model simulations on the impacts of anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document