scholarly journals A Dipole Pattern of Summertime Rainfall across the Indian Subcontinent and the Tibetan Plateau

2017 ◽  
Vol 30 (23) ◽  
pp. 9607-9620 ◽  
Author(s):  
Xingwen Jiang ◽  
Mingfang Ting

The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, have indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, the covariability of the July–August mean rainfall across the Indian subcontinent (IS) and the TP is investigated. It is found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk Road wave train via its link to rainfall over the northwestern IS.

2021 ◽  
pp. 1-40
Author(s):  
Qingzhe Zhu ◽  
Yuzhi Liu ◽  
Tianbin Shao ◽  
Run Luo ◽  
Ziyuan Tan

AbstractThe Tibetan Plateau (TP), the “Water Tower of Asia”, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July-August for the period of 1981-2019, the SWJ center between 75°E and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Yang ◽  
Guan-yu Xu ◽  
Xiaofang Wang ◽  
Chunguang Cui ◽  
Jingyu Wang ◽  
...  

There are continuous precipitation systems moving eastward from the Tibetan Plateau to the middle and lower reaches of the Yangtze-Huai River during the Mei-yu period. We selected 20 typical Mei-yu front precipitation cases from 2010 to 2015 based on observational and reanalysis data and studied the characteristics of their environmental fields. We quantitatively analyzed the transport and sources of water vapor in the rainstorms using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4.9) model. All 20 Mei-yu front precipitation cases occurred in a wide region from the Tibetan Plateau to the Yangtze-Huai River. The South Asian high and upper level jet stream both had strong intensities during the Mei-yu front rainstorm periods. Heavy rainfall mainly occurred in the divergence zone to the right of the high-level jet and in the convergence zone of the low-level jet, where strong vertical upward flows provided the dynamic conditions required for heavy rainfall. The water vapor mainly originated from the Indian Ocean, Bay of Bengal, and South China Sea. 52% of the air masses over the western Tibetan Plateau originated from Central Asia, which were rich in water vapor. The water vapor contribution at the initial position was only 41.5% due to the dry, cold air mass over Eurasia, but increased to 47.6% at the final position. Over the eastern Tibetan Plateau to the Sichuan Basin region, 40% of the air parcels came from the Indian Ocean, which was the main channel for water vapor transport. For the middle and lower reaches of the Yangtze River, 37% of the air parcels originated from the warm and humid Indian Ocean. The water vapor contribution at the initial position was 38.6%, but increased to 40.2% after long-distance transportation.


2021 ◽  
Author(s):  
Xiangde Xu ◽  
Chan Sun ◽  
Deliang Chen ◽  
Tianliang Zhao ◽  
Jianjun Xu ◽  
...  

Abstract. By using the multi-source data of meteorology over recent decades, this study discovered a summertime “hollow wet pool” in the troposphere with a center of high water vapor over Asian water tower (AWT) on the Tibetan Plateau (TP), where is featured by a vertical transport “window” in the troposphere. The water vapor transport in the upper troposphere extends from the vertical transport window over the TP with the significant connections among the Arctic, Antarctic and TP regions, highlighting an effect of TP’s vertical transport window of tropospheric vapor in the “hollow wet pool” on global change. The vertical transport window was built by the AWT’s thermal forcing in associated with the dynamic effect of the TP’s “hollow heat island”. Our study improve the understanding on the vapor transport over the TP with an important implication to global change.


2021 ◽  
Vol 13 (18) ◽  
pp. 3661
Author(s):  
Zhongbo Su ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Xiaohua Dong ◽  
Junping Du ◽  
...  

A better understanding of the water and energy cycles at climate scale in the Third Pole Environment is essential for assessing and understanding the causes of changes in the cryosphere and hydrosphere in relation to changes of plateau atmosphere in the Asian monsoon system and for predicting the possible changes in water resources in South and East Asia. This paper reports the following results: (1) A platform of in situ observation stations is briefly described for quantifying the interactions in hydrosphere-pedosphere-atmosphere-cryosphere-biosphere over the Tibetan Plateau. (2) A multiyear in situ L-Band microwave radiometry of land surface processes is used to develop a new microwave radiative transfer modeling system. This new system improves the modeling of brightness temperature in both horizontal and vertical polarization. (3) A multiyear (2001–2018) monthly terrestrial actual evapotranspiration and its spatial distribution on the Tibetan Plateau is generated using the surface energy balance system (SEBS) forced by a combination of meteorological and satellite data. (4) A comparison of four large scale soil moisture products to in situ measurements is presented. (5) The trajectory of water vapor transport in the canyon area of Southeast Tibet in different seasons is analyzed, and (6) the vertical water vapor exchange between the upper troposphere and the lower stratosphere in different seasons is presented.


2010 ◽  
Vol 28 (6) ◽  
pp. 1369-1376 ◽  
Author(s):  
Y. Xie ◽  
F. Wei ◽  
G. Chen ◽  
T. Zhang ◽  
L. Hu

Abstract. Four successive storms with freezing rain and snow blanketed South China from 10 January–2 February 2008, when the precipitation increased more than 200%–300% above the average for the corresponding period. The unusual atmospheric circulation associated with these disasters was caused by many complex physical processes, one of which was the active southern branch of currents over low latitude ocean areas which provided plenty of water vapor for South China. The ground-based GPS Precipitable Water Vapor (PWV) measurements on the Tibetan Plateau, supported by the China and Japan Intergovernmental Cooperation Program (JICA), has compensated for the lack of conventional observations of atmospheric water vapor in this area and provided a good opportunity to analyze the character of the water vapor transport in the four heavy precipitation processes. It was found that the GPS stations located on the southeastern Tibetan Plateau were on the route of the water vapor transport during 25 January–29 January and 31 January–2 February when two heavy precipitation events occurred over South China. The increasing trend from the one to two days pre-observation by the GPS stations was then associated with the heavy precipitation. Precipitation during 10 January–16 January and 18 January–22 January was significantly related to the abnormal variation of the one day pre-observation by the GPS stations located on the northeastern Tibetan Plateau. This research indicates that ground-based GPS measurements are applicable to data assimilation in operational numerical models.


2019 ◽  
Vol 32 (8) ◽  
pp. 2227-2245 ◽  
Author(s):  
Xingwen Jiang ◽  
Mingfang Ting

AbstractIntraseasonal variability of rainfall over the Indian subcontinent (IS) and the Tibetan Plateau (TP) has been discussed widely but often separately. In this study, we investigate the covariability of rainfall across the IS and the TP on intraseasonal time scales and its impact on interannual variability of regional rainfall. The most dominant mode of rainfall intraseasonal variability across the region features a dipole pattern with significant out-of-phase rainfall anomalies between the southeastern TP and the central and northern IS. This dipole rainfall pattern is associated with intraseasonal oscillations (ISOs) of 10–20 days and 30–60 days, especially the latter. An active spell of rainfall in the central and northern IS (southeastern TP) is associated with the strengthening (northward shift) of water vapor transport of the Indian summer monsoon, resulting in more water vapor entering into the central and northern IS (southeastern TP) and thus more rainfall. The 10–20-day ISO of the dipole rainfall pattern is caused by the 10–20-day atmospheric ISO in both the tropics and the extratropics, whereas the 30–60-day ISO of the dipole rainfall pattern is only associated with atmospheric ISO in the tropics. The dipole rainfall pattern resembles the most dominant mode of interannual variability of July–August mean rainfall. The 30–60-day ISO of the dipole rainfall pattern has an important contribution to the dipole pattern of July–August mean rainfall anomalies on an interannual time scale due to the different frequencies of occurrence of the active and break phases.


2016 ◽  
Vol 9 (3) ◽  
pp. 1399-1413 ◽  
Author(s):  
Songhua Wu ◽  
Guangyao Dai ◽  
Xiaoquan Song ◽  
Bingyi Liu ◽  
Liping Liu

Abstract. As a part of the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III) in China, a Raman water vapor, cloud and aerosol lidar and a coherent wind lidar were operated in Naqu (31.48° N, 92.06° E) with a mean elevation of more than 4500 m a.m.s.l. in summer of 2014. During the field campaign, the water vapor mixing ratio profiles were obtained and validated by radiosonde observations. The mean water vapor mixing ratio in Naqu in July and August was about 9.4 g kg−1 and the values vary from 6.0 to 11.7 g kg−1 near the ground according to the lidar measurements, from which a diurnal variation of water vapor mixing ratio in the planetary boundary layer was also illustrated in this high-elevation area. Furthermore, using concurrent measurements of vertical wind speed profiles from the coherent wind lidar, we calculated the vertical flux of water vapor that indicates the water vapor transport through updraft and downdraft. The fluxes were for a case at night with large-scale non-turbulent upward transport of moisture. It is the first application, to our knowledge, to operate continuously atmospheric observations by utilizing multi-disciplinary lidars at the altitude higher than 4000 m, which is significant for research on the hydrologic cycle in the atmospheric boundary layer and lower troposphere in the Tibetan Plateau.


2020 ◽  
Vol 33 (19) ◽  
pp. 8507-8522 ◽  
Author(s):  
Jing Sun ◽  
Kun Yang ◽  
Weidong Guo ◽  
Yan Wang ◽  
Jie He ◽  
...  

AbstractThe Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.


Sign in / Sign up

Export Citation Format

Share Document