scholarly journals Intrinsic and Atmospherically Forced Variability of the AMOC: Insights from a Large-Ensemble Ocean Hindcast

2018 ◽  
Vol 31 (3) ◽  
pp. 1183-1203 ◽  
Author(s):  
Stephanie Leroux ◽  
Thierry Penduff ◽  
Laurent Bessières ◽  
Jean-Marc Molines ◽  
Jean-Michel Brankart ◽  
...  

Abstract This study investigates the origin and features of interannual–decadal Atlantic meridional overturning circulation (AMOC) variability from several ocean simulations, including a large (50 member) ensemble of global, eddy-permitting (1/4°) ocean–sea ice hindcasts. After an initial stochastic perturbation, each member is driven by the same realistic atmospheric forcing over 1960–2015. The magnitude, spatiotemporal scales, and patterns of both the atmospherically forced and intrinsic–chaotic interannual AMOC variability are then characterized from the ensemble mean and ensemble spread, respectively. The analysis of the ensemble-mean variability shows that the AMOC fluctuations north of 40°N are largely driven by the atmospheric variability, which forces meridionally coherent fluctuations reaching decadal time scales. The amplitude of the intrinsic interannual AMOC variability never exceeds the atmospherically forced contribution in the Atlantic basin, but it reaches up to 100% of the latter around 35°S and 60% in the Northern Hemisphere midlatitudes. The intrinsic AMOC variability exhibits a large-scale meridional coherence, especially south of 25°N. An EOF analysis over the basin shows two large-scale leading modes that together explain 60% of the interannual intrinsic variability. The first mode is likely excited by intrinsic oceanic processes at the southern end of the basin and affects latitudes up to 40°N; the second mode is mostly restricted to, and excited within, the Northern Hemisphere midlatitudes. These features of the intrinsic, chaotic variability (intensity, patterns, and random phase) are barely sensitive to the atmospheric evolution, and they strongly resemble the “pure intrinsic” interannual AMOC variability that emerges in climatological simulations under repeated seasonal-cycle forcing. These results raise questions about the attribution of observed and simulated AMOC signals and about the possible impact of intrinsic signals on the atmosphere.

2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


2019 ◽  
Vol 32 (19) ◽  
pp. 6219-6236 ◽  
Author(s):  
Yun Hang ◽  
Tristan S. L’Ecuyer ◽  
David S. Henderson ◽  
Alexander V. Matus ◽  
Zhien Wang

Abstract The role of clouds in modulating vertically integrated atmospheric heating is investigated using CloudSat’s multisensor radiative flux dataset. On the global mean, clouds are found to induce a net atmospheric heating of 0.07 ± 0.08 K day−1 that derives largely from 0.06 ± 0.07 K day−1 of enhanced shortwave absorption and a small, 0.01 ± 0.04 K day−1 reduction of longwave cooling. However, this small global average longwave effect results from the near cancellation of much larger regional warming by multilayered cloud systems in the tropics and cooling from stratocumulus clouds in subtropical oceans. Clouds are observed to warm the tropical atmosphere by 0.23 K day−1 and cool the polar atmosphere by −0.13 K day−1 enhancing required zonal heat redistribution by the meridional overturning circulation. Zonal asymmetries in the occurrence of multilayered clouds that are more frequent in the Northern Hemisphere and stratocumulus that occur more frequently over the southern oceans also leads to 3 times as much cloud heating in the Northern Hemisphere (0.1 K day−1) than the Southern Hemisphere (0.04 K day−1). These findings suggest that clouds very likely make the strongest contribution to the annual mean atmospheric energy imbalance between the hemispheres (2.0 ± 3.5 PW).


2019 ◽  
Vol 50 (6) ◽  
pp. 1577-1595 ◽  
Author(s):  
C. E. Hudson ◽  
J. R. Thompson

Abstract A hydrological model of Siberia's Lena River Basin is calibrated and validated against observed river discharge at five stations. Implications of the Representative Concentration Pathway 4.5 scenario for river discharge are assessed using projections from 41 Coupled Model Intercomparison Project Phase 5 General Circulation Models grouped into 12 genealogical-based groups as well as a group ensemble mean. Annual precipitation increases in all scenarios (1.7–47.4%). Increases in annual PET are of a similar range (6.0–45.5%). PET peaks in June compared to July for the baseline. All temperature changes exceed 1.5 °C (range: 2.2 °C–6.2 °C). The largest absolute increases are in winter (maximum +7 °C). Changes in mean annual discharge range from −8.5 to +69.9%. Ten GCM groups and the group ensemble mean project increases. Earlier snowmelt is dominant so the annual flood peaks in May compared with June for the baseline. Increased discharge of the Lena and other Eurasian rivers to the Arctic Ocean has the potential to impact Atlantic Meridional Overturning Circulation (AMOC). Enhanced fluxes for four groups are capable of weakening the AMOC. Changes for other groups may contribute to weakening when combined with other sources of freshwater and warmer temperatures.


2006 ◽  
Vol 36 (4) ◽  
pp. 636-650 ◽  
Author(s):  
Juliette Mignot ◽  
Anders Levermann ◽  
Alexa Griesel

Abstract The sensitivity of the Atlantic Ocean meridional overturning circulation to the vertical diffusion coefficient κ in the global coupled atmosphere–ocean–sea ice model CLIMBER-3α is investigated. An important feature of the three-dimensional ocean model is its low-diffusive tracer advection scheme. The strength Mmax of the Atlantic overturning is decomposed into three components: 1) the flow MS exported southward at 30°S, 2) the large-scale upward flow that balances vertical diffusion in the Atlantic, and 3) a wind-dependent upwelling flux Wbound along the Atlantic boundaries that is not due to vertical diffusion. The export of water at 30°S varies only weakly with κ, but is strongly correlated with the strength of the overflow over the Greenland–Scotland ridge. The location of deep convection is found to be mixing dependent such that a shift from the Nordic seas to the Irminger Sea is detected for high values of κ. The ratio R = MS/Mmax gives a measure of the interhemispheric overturning efficiency and is found to decrease linearly with κ. The diffusion-induced upwelling in the Atlantic is mostly due to the uniform background value of κ while parameterization of enhanced mixing over rough topography and in stratified areas gives only a weak contribution to the overturning strength. It increases linearly with κ. This is consistent with the classic 2/3 scaling law only when taking the linear variation of the density difference to κ into account. The value of Wbound is roughly constant with κ but depends linearly on the wind stress strength in the North Atlantic. The pycnocline depth is not sensitive to changes in κ in the model used herein, and the results suggest that it is primarily set by the forcing of the Southern Ocean winds. The scaling of the total overturning strength with κ depends on the combined sensitivity of each of the terms to κ. In the range of background diffusivity values in which no switch in deep convection sites is detected, Mmax scales linearly with the vertical diffusivity. It is argued that scalings have, in general, to be interpreted with care because of the generally very small range of κ but also because of possible shifts in important physical processes such as deep convection location.


2020 ◽  
Author(s):  
Chris W. Hughes ◽  
Joanne Williams ◽  
Adam Blaker ◽  
Andrew C. Coward

<p>The rapid propagation of boundary waves (or, equivalently, the strong influence of topography on vorticity balance) ensures that bottom pressure along the global continental slope reflects large scale ocean processes, making it possible to see through the fog of the mesoscale, which obscures many observable quantities. This fact is exploited in systems to monitor the Atlantic Meridional Overturning Circulation (AMOC). Here, we use diagnostics from an ocean model with realistic mesoscale variability to demonstrate two things. First: boundary pressures form an efficient method of monitoring AMOC variability. Second: pressures are remarkably constant along isobaths around the global continental slope, varying by less than 5 cm sea-level-equivalent over vast distances below the directly wind-driven circulation. In the latter context, the AMOC stands out as a clear exception, leading to a link between the AMOC and differences in the hydrography of entire ocean basins.</p>


2007 ◽  
Vol 20 (19) ◽  
pp. 4899-4919 ◽  
Author(s):  
A. Timmermann ◽  
Y. Okumura ◽  
S.-I. An ◽  
A. Clement ◽  
B. Dong ◽  
...  

Abstract The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Tatsuya Hayashi ◽  
Toshiro Yamanaka ◽  
Yuki Hikasa ◽  
Masahiko Sato ◽  
Yoshihiro Kuwahara ◽  
...  

Abstract The global climate has been dominated by glacial–interglacial variations since the intensification of Northern Hemisphere glaciation 2.7 million years ago. Although the Atlantic meridional overturning circulation has exerted strong influence on recent climatic changes, there is controversy over its influence on Northern Hemisphere glaciation because its deep limb, North Atlantic Deep Water, was thought to have weakened. Here we show that Northern Hemisphere glaciation was amplified by the intensified Atlantic meridional overturning circulation, based on multi-proxy records from the subpolar North Atlantic. We found that the Iceland–Scotland Overflow Water, contributing North Atlantic Deep Water, significantly increased after 2.7 million years ago and was actively maintained even in early stages of individual glacials, in contrast with late stages when it drastically decreased because of iceberg melting. Probably, the active Nordic Seas overturning during the early stages of glacials facilitated the efficient growth of ice sheets and amplified glacial oscillations.


2011 ◽  
Vol 24 (24) ◽  
pp. 6424-6439 ◽  
Author(s):  
Daiwei Wang ◽  
Mark A. Cane

Abstract By analyzing a set of the Coupled Model Intercomparison Project phase 3 (CMIP3) climate model projections of the twenty-first century, it is found that the shallow meridional overturning of the Pacific subtropical cells (STCs) show contrasting trends between two hemispheres in a warming climate. The strength of STCs and equivalently the STC surface-layer transport tend to be weakening (strengthening) in the Northern (Southern) Hemisphere as a response to large-scale surface wind changes over the tropical Pacific. The STC pycnocline transport convergence into the equatorial Pacific Ocean from higher latitudes shows a robust weakening in the twenty-first century. This weakening is mainly through interior pathways consistent with the relaxation of the zonal pycnocline tilt, whereas the transport change through western boundary pathways is small and not consistent across models. It is found that the change of the western boundary pycnocline transport is strongly affected by the shoaling of the pycnocline base. In addition, there is a robust weakening of the Indonesian Throughflow (ITF) transport in a warming climate. In the multimodel ensemble mean, the response to greenhouse warming of the upper-ocean mass balance associated with the STCs is such that the weakening of the equatorward pycnocline transport convergence is balanced by a weakening of the poleward surface-layer transport divergence and the ITF transport of similar amounts.


2011 ◽  
Vol 41 (5) ◽  
pp. 960-978 ◽  
Author(s):  
David P. Marshall ◽  
Helen R. Pillar

Abstract When a force is applied to the ocean, fluid parcels are accelerated both locally, by the applied force, and nonlocally, by the pressure gradient forces established to maintain continuity and satisfy the kinematic boundary condition. The net acceleration can be represented through a “rotational force” in the rotational component of the momentum equation. This approach elucidates the correspondence between momentum and vorticity descriptions of the large-scale ocean circulation: if two terms balance pointwise in the rotational momentum equation, then the equivalent two terms balance pointwise in the vorticity equation. The utility of the approach is illustrated for three classical problems: barotropic Rossby waves, wind-driven circulation in a homogeneous basin, and the meridional overturning circulation in an interhemispheric basin. In the hydrostatic limit, it is shown that the rotational forces further decompose into depth-integrated forces that drive the wind-driven gyres and overturning forces that are confined to the basin boundaries and drive the overturning circulation. Potential applications of the approach to diagnosing the output of ocean circulation models, alternative and more accurate formulations of numerical ocean models, the dynamics of boundary layer separation, and eddy forcing of the large-scale ocean circulation are discussed.


2007 ◽  
Vol 67 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Bjørg Risebrobakken ◽  
Trond Dokken ◽  
Odd Helge Otterå ◽  
Eystein Jansen ◽  
Yongqi Gao ◽  
...  

AbstractAbout 115,000 yr ago the last interglacial reached its terminus and nucleation of new ice-sheet growth was initiated. Evidence from the northernmost Nordic Seas indicate that the inception of the last glacial was related to an intensification of the Atlantic Meridional Overturning Circulation (AMOC) in its northern limb. The enhanced AMOC, combined with minimum Northern hemisphere insolation, introduced a strong sea–land thermal gradient that, together with a strong wintertime latitudinal insolation gradient, increased the storminess and moisture transport to the high Northern European latitudes at a time when the Northern hemisphere summer insolation approached its minimum.


Sign in / Sign up

Export Citation Format

Share Document