scholarly journals Diurnal Cycle of the ITCZ in DYNAMO

2018 ◽  
Vol 31 (11) ◽  
pp. 4543-4562 ◽  
Author(s):  
Paul E. Ciesielski ◽  
Richard H. Johnson ◽  
Wayne H. Schubert ◽  
James H. Ruppert

Abstract During the 2011 special observing period of the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment, two sounding arrays were established over the central Indian Ocean, one north and one south of the equator, referred to here as the NSA and SSA, respectively. Three-hourly soundings from these arrays augmented by observations of radiation and rainfall are used to investigate the diurnal cycle of ITCZ convection during the MJO suppressed phase. During the first half of October, when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell. Strong rising motion was present within the ITCZ extending across the SSA with compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (0500–0800 LT) and notably weakening later in the day (1700–2000 LT). The declining daytime subsidence over the NSA may have assisted the moistening of the low to midtroposphere there during the pre-onset stage of the MJO. Apparent heating Q1 within the ITCZ exhibited a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles, indicating a progression from convective to stratiform precipitation. Making use of the weak temperature gradient approximation, results suggest that both horizontal radiative heating gradients and direct cloud radiative forcing have an important influence on diurnal variations of vertical motion and convection within the ITCZ.

2008 ◽  
Vol 21 (22) ◽  
pp. 6036-6043 ◽  
Author(s):  
Jian Li ◽  
Rucong Yu ◽  
Tianjun Zhou

Abstract Hourly station rain gauge data are employed to study the seasonal variation of the diurnal cycle of rainfall in southern contiguous China. The results show a robust seasonal variation of the rainfall diurnal cycle, which is dependent both on region and duration. Difference in the diurnal cycle of rainfall is found in the following two neighboring regions: southwestern China (region A) and southeastern contiguous China (region B). The diurnal cycle of annual mean precipitation in region A tends to reach the maximum in either midnight or early morning, while precipitation in region B has a late-afternoon peak. In contrast with the weak seasonal variation of the diurnal phases of precipitation in region A, the rainfall peak in region B shifts sharply from late afternoon in warm seasons to early morning in cold seasons. Rainfall events in south China are classified into short- (1–3 h) and long-duration (more than 6 h) events. Short-duration precipitation in both regions reaches the maximum in late afternoon in warm seasons and peaks in either midnight or early morning in cold seasons, but the late-afternoon peak in region B exists during February–October, while that in region A only exists during May–September. More distinct differences between regions A and B are found in the long-duration rainfall events. The long-duration events in region A show dominant midnight or early morning peaks in all seasons. But in region B, the late-afternoon peak exists during July–September. Possible reasons for the difference in the diurnal cycle of rainfall between the two regions are discussed. The different cloud radiative forcing over regions A and B might contribute to this difference.


2013 ◽  
Vol 13 (3) ◽  
pp. 1659-1673 ◽  
Author(s):  
A. K. L. Jenkins ◽  
P. M. Forster ◽  
L. S. Jackson

Abstract. The marine-cloud brightening geoengineering technique has been suggested as a possible means of counteracting the positive radiative forcing associated with anthropogenic atmospheric CO2 increases. The focus of this study is to quantify the albedo response to aerosols injected into marine stratocumulus cloud from a point source at different times of day. We use a cloud-resolving model to investigate both weakly precipitating and non-precipitating regimes. Injection into both regimes induces a first indirect aerosol effect. Additionally, the weakly precipitating regime shows evidence of liquid water path gain associated with a second indirect aerosol effect that contributes to a more negative radiative forcing, and cloud changes indicative of a regime change to more persistent cloud. This results in a cloud albedo increase up to six times larger than in the non-precipitating case. These indirect effects show considerable variation with injection at different times in the diurnal cycle. For the weakly precipitating case, aerosol injection results in domain average increases in cloud albedo of 0.28 and 0.17 in the early and mid morning (03:00:00 local time (LT) and 08:00:00 LT respectively) and 0.01 in the evening (18:00:00 LT). No cloud develops when injecting into the cloud-free early afternoon (13:00:00 LT). However, the all-sky albedo increases (which include both the indirect and direct aerosol effects) are highest for early morning injection (0.11). Mid-morning and daytime injections produce increases of 0.06, with the direct aerosol effect compensating for the lack of cloud albedo perturbation during the cloud-free early afternoon. Evening injection results in an increase of 0.04. For the weakly precipitating case considered, the optimal injection time for planetary albedo response is the early morning. Here, the cloud has more opportunity develop into a more persistent non-precipitating regime prior to the dissipative effects of solar heating. The effectiveness of the sea-spray injection method is highly sensitive to diurnal injection time and the direct aerosol effect of an intense aerosol point source. Studies which ignore these factors could overstate the effectiveness of the marine cloud brightening technique.


2015 ◽  
Vol 72 (2) ◽  
pp. 598-622 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
James H. Ruppert ◽  
Masaki Katsumata

Abstract The Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden–Julian oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the special observing period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q1 and Q2) and radiative heating rates QR throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA. Time series of Q1, Q2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, nonprecipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q1 and Q2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA—a finding supported by TRMM measurements. Surface rainfall rates and net tropospheric QR determined as residuals from the budgets show good agreement with satellite-based estimates. The cloud radiative forcing was approximately 20% of the column-integrated convective heating and of the same amplitude as the normalized gross moist stability, leaving open the possibility of radiative–convective instability for the two MJOs.


2013 ◽  
Vol 118 (16) ◽  
pp. 8935-8953 ◽  
Author(s):  
Alan K. Betts ◽  
Raymond Desjardins ◽  
Devon Worth

2012 ◽  
Vol 12 (9) ◽  
pp. 24205-24241
Author(s):  
A. K. L. Jenkins ◽  
P. M. Forster ◽  
L. S. Jackson

Abstract. The marine-cloud brightening geoengineering technique has been suggested as a~possible means of counteracting the positive radiative forcing associated with anthropogenic atmospheric CO2 increases. The focus of this study is to quantify the albedo response to aerosols injected into marine stratocumulus cloud from a point source at different times of day. We use a cloud-resolving model to investigate both weakly precipitating and non-precipitating regimes. Injection into both regimes induces a first indirect aerosol effect. Additionally, the weakly precipitating regime shows evidence of the second indirect aerosol effect and leads to cloud changes indicative of a regime change to more persistent cloud. This results in a cloud albedo increase up to six times larger than in the non-precipitating case. These indirect effects show considerable variation with injection at different times in the diurnal cycle. For the weakly precipitating case, aerosol injection results in average increases in cloud albedo of 0.28 and 0.17 in the early and mid morning (03:00:00 local time (LT) and 08:00:00 LT, respectively) and 0.01 in the evening (18:00:00 LT). No cloud develops when injecting into the cloud-free day (13:00:00 LT). However, the all-sky albedo increases (which include both the indirect and direct aerosol effects) are highest for early morning injection (0.11). Mid-morning and daytime injections produce increases of 0.06, with the direct aerosol effect compensating for the lack of cloud albedo perturbation during the cloud-free day. Evening injection results in an increase of 0.04. Penetration and accumulation of aerosols above the cloud top may lead to a reduction of all-sky albedo that tempers the cloud albedo increases. The apparent direct aerosol tempering effect increases with injection rate, although not enough to overcome the increase in all-sky planetary albedo resulting from increases in cloud albedo. For the weakly precipitating case considered, the optimal injection time for planetary albedo response is the early morning. Here, the cloud has more opportunity develop into a more persistent non-precipitating regime prior to the dissipative effects of solar heating. The effectiveness of the sea-spray injection method is highly sensitive to diurnal injection time and the direct aerosol effect of an intense aerosol point source. Studies which ignore these factors could overstate the effectiveness of the marine cloud brightening technique.


2018 ◽  
Vol 31 (12) ◽  
pp. 4899-4916 ◽  
Author(s):  
James H. Ruppert ◽  
Cathy Hohenegger

This study investigates the diurnal cycle of tropical organized deep convection and the feedback in large-scale circulation. By considering gravity wave phase speeds, we find that the circulation adjustment into weak temperature gradient (WTG) balance occurs rapidly (<6 h) relative to diurnal diabatic forcing on the spatial scales typical of organized convection (≤500 km). Convection-permitting numerical simulations of self-aggregation in diurnal radiative–convective equilibrium (RCE) are conducted to explore this further. These simulations depict a pronounced diurnal cycle of circulation linked to organized convection, which indeed maintains WTG balance to first order. A set of sensitivity experiments is conducted to assess what governs the diurnal cycle of organized convection. We find that the “direct radiation–convection interaction” (or lapse-rate) mechanism is of primary importance for diurnal precipitation range, while the “dynamic cloudy–clear differential radiation” mechanism amplifies the range by approximately 30%, and delays the nocturnal precipitation peak by around 5 h. The differential radiation mechanism therefore explains the tendency for tropical heavy rainfall to peak in the early morning, while the lapse-rate mechanism primarily governs diurnal amplitude. The diurnal evolution of circulation can be understood as follows. While nocturnal deep convection invigorated by cloud-top cooling (i.e., the lapse-rate mechanism) leads to strong bottom-heavy circulation at nighttime, the localized (i.e., differential) top-heavy shortwave warming in the convective region invigorates circulation at upper levels in daytime. A diurnal evolution of the circulation therefore arises, from bottom heavy at nighttime to top heavy in daytime, in a qualitatively consistent manner with the observed diurnal pulsing of the Hadley cell driven by the ITCZ.


2021 ◽  
Vol 22 (2) ◽  
pp. 71-84
Author(s):  
Sindy Maharani ◽  
Hasti Amrih Rejeki

Intisari Madden Julian Oscillation (MJO) merupakan osilasi gelombang submusiman di wilayah tropis yang berpropagasi ke arah timur dari Samudera Hindia melewati Benua Maritim Indonesia (BMI) hingga Samudera Pasifik. Propagasi MJO dapat meningkatkan konvektivitas dan curah hujan pada wilayah yang dilewatinya. Lampung merupakan salah satu wilayah di BMI bagian barat yang berbatasan dengan Samudera Hindia sebagai tempat awal kemunculan MJO. Posisi Lampung tersebut menyebabkan perbedaan insolasi antara daratan dan lautan secara diurnal sehingga siklus diurnal ikut berperan dalam pembentukan cuaca. Oleh karena itu penelitian ini bertujuan untuk mengetahui pengaruh propagasi MJO dari Fase 3-5 pada tahun 2018 terhadap siklus diurnal dinamika atmosfer dan curah hujan di Lampung. Siklus diurnal dianalisis dengan membagi empat periode waktu yaitu dini hari (00.00-06.00 LT), pagi hari (06.00-12.00 LT), siang hari (12.00-18.00 LT) dan malam hari (18.00-00.00 LT). Berdasarkan rata-rata komposit data Reanalysis ECMWF, GSMaP, dan curah hujan observasi didapatkan bahwa selama penjalarannya MJO menguat ketika Fase 3-4 dan melemah ketika Fase 5. Secara diurnal konvektivitas yang kuat dan curah hujan tinggi terjadi di perairan pada dini hari hingga pagi hari, di daerah pesisir pada siang hari, dan di daratan pada malam hari yang meningkat dari Fase 3-4 dan melemah pada Fase 5. Hujan menjalar dari Lampung bagian barat menuju Lampung bagian tengah dengan jeda waktu selama 2-5 jam ketika Fase 3, 4-7 jam ketika Fase 4, dan 1-2 jam ketika Fase 5. Pada Fase 3-5 hujan terjadi di Lampung bagian timur dengan perbedaan waktu 1-3 jam dari Lampung bagian tengah.   Abstract Madden Julian oscillation (MJO) is a sub-seasonal wave oscillation in the tropics that propagates eastward from the Indian Ocean through the Indonesian Maritime Continent (IMC) until the Pacific Ocean. MJO propagation can increase convective and rainfall in the regions it passes. Lampung is one of the regions in the western IMC which near the Indian Ocean for the MJO first appeared. The Lampung position causes different insolation between land and sea diurnally, so the diurnal cycles play an important role in weather formation. Therefore, this study aims to determine the effect of MJO propagation phases 3-5 in 2018 on the diurnal cycle of atmospheric dynamics and rainfall in Lampung. The diurnal cycle was analyzed by dividing four periods of time, in the early morning (00-06 LT), morning (06-12 LT), afternoon (12-18 LT), and night (18-00 LT). Based on the average composite of ECMWF, GSMaP, and precipitation observations data were obtained that propagation MJO strengthens during phase 3-4 and weakens during phase 5. Diurnal strong convective and high rainfall occur in the oceans from early morning to morning, in coastal during the day, and on land at night which increases from phase 3-4 and weakens in phase 5. Rain propagates from western Lampung to central Lampung with a time lag of 2-5 hours during phase 3, 4-7 hours when phases 4, and 1 -2 hours during phase 5. In the 3-5 phase, rain occurs in eastern Lampung with a time difference of 1-3 hours from central Lampung.  


2015 ◽  
Vol 28 (16) ◽  
pp. 6351-6359 ◽  
Author(s):  
Hanjun Kim ◽  
Sarah M. Kang ◽  
Yen-Ting Hwang ◽  
Young-Min Yang

Abstract This study explores the dependence of the climate response on the altitude of black carbon in the northern subtropics by employing an atmospheric general circulation model coupled to an aquaplanet mixed layer ocean, with a focus on the pattern changes in the temperature, hydrological cycle, and large-scale circulation. Black carbon added below or within the subtropical low-level clouds tends to suppress convection, which reduces the low cloud amount, resulting in a positive cloud radiative forcing. The warmer northern subtropics then induce a northward shift of the intertropical convergence zone (ITCZ) and a poleward expansion of the descending branch of the northern Hadley cell. As the black carbon–induced local warming is amplified by clouds and is advected by the anomalous Hadley circulation, the entire globe gets warmer. In contrast, black carbon added near the surface increases the buoyancy of air parcels to enhance convection, leading to an increase in the subtropical low cloud amount and a negative cloud radiative forcing. The temperature increase remains local to where black carbon is added and elsewhere decreases, so that the ITCZ is shifted southward and the descending branch of the northern Hadley cell contracts equatorward. Consistent with previous studies, the authors demonstrate that the climate response to black carbon is highly sensitive to the vertical distribution of black carbon relative to clouds; hence, models have to accurately compute the vertical transport of black carbon to enhance their skill in simulating the climatic effects of black carbon.


2012 ◽  
Vol 25 (4) ◽  
pp. 1247-1262 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Hirohiko Masunaga ◽  
Yoko Tsushima ◽  
Hiroshi Kanzawa

Abstract In this study, cloud radiative forcing (CRF) associated with convective activity over tropical oceans is analyzed for monthly mean data from twentieth-century simulations of 18 climate models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) in comparison with observational and reanalysis data. The analysis is focused on the warm oceanic regions with sea surface temperatures (SSTs) above 27°C to exclude the regions with cold SSTs typically covered by low stratus clouds. CRF is evaluated for different regimes sorted by pressure-coordinated vertical motion at 500 hPa (ω500) as an index of large-scale circulation. The warm oceanic regions cover the regime of vertical motion ranging from strong ascent to weak descent. The most notable feature found in this study is a systematic underestimation by most models of the ratio of longwave cloud radiative forcing (LWCRF) to shortwave cloud radiative forcing (SWCRF) over the weak vertical motion regime defined as −10 &lt; ω500 &lt; 20 hPa day−1. The underestimation of the ratio corresponds to the underestimation of LWCRF and the overestimation of SWCRF. Clouds in models seem to be lower in the amount of high clouds but more reflective than those in the observations in this regime. In the weak vertical motion regime, the lower free troposphere is dry. In the large-scale environment condition, the reproducibility of LWCRF is high in models adopting the scheme where the relative humidity–based suppression for deep convection occurrence is implemented. Models adopting the Zhang and McFarlane scheme show good performance without such a suppression mechanism.


Sign in / Sign up

Export Citation Format

Share Document