scholarly journals Investigating Land Surface Effects on the Moisture Transport over South America with a Moisture Tagging Model

2019 ◽  
Vol 32 (19) ◽  
pp. 6627-6644 ◽  
Author(s):  
Zhao Yang ◽  
Francina Dominguez

Abstract Land–atmosphere interactions are a critical component of precipitation processes within the Amazon basin and La Plata River basin (LPRB) in South America. Two of the possible pathways through which the land surface can affect precipitation are 1) by changing the amount of moisture available for precipitation (moisture recycling) and 2) by changing the atmospheric thermal structure and consequently affecting circulation patterns. In this study, the Weather Research and Forecasting (WRF) Model with embedded water vapor tracers (WVT) is used to disentangle these relative contributions, with a particular focus on the precipitation of LPRB. Using WRF-WVT we track the moisture that originates from the Amazon basin over a 10-yr period. It is estimated that Amazon evapotranspiration (ET) contributes to around 30% of the total precipitation over the Amazon and around 16% over the LPRB. Focusing on large-scale circulation patterns that transport moisture into the LPRB, we show that land surface conditions in northwestern Argentina are critical for the meridional transport of moisture to higher latitudes via Chaco jet events (CJEs). Warm surface air temperature associated with dry soil moisture over northwestern Argentina is linked to enhanced CJE northerly low-level winds that intensify moisture transport by changing continental-scale circulation patterns. WRF sensitivity tests confirm that soil moisture variations over this region affect meridional moisture transport.

2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2010 ◽  
Vol 138 (7) ◽  
pp. 2481-2498 ◽  
Author(s):  
Celeste Saulo ◽  
Lorena Ferreira ◽  
Julia Nogués-Paegle ◽  
Marcelo Seluchi ◽  
Juan Ruiz

Abstract The impact of changes in soil moisture in subtropical Argentina in rainfall distribution and low-level circulation is studied with a state-of-the-art regional model in a downscaling mode, with different scenarios of soil moisture for a 10-day period. The selected case (starting 29 January 2003) was characterized by a northwestern Argentina low event associated with well-defined low-level northerly flow that extended east of the Andes over subtropical latitudes. Four tests were conducted at 40-km horizontal resolution with 31 sigma levels, decreasing and increasing the soil moisture initial condition by 50% over the entire domain, and imposing a 50% reduction over northwest Argentina and 50% increase over southeast South America. A control run with NCEP/Global Data Assimilation System (GDAS) initial conditions was used to assess the impact of the different soil moisture configurations. It was found that land surface interactions are stronger when soil moisture is decreased, with a coherent reduction of precipitation over southern South America. Enhanced northerly winds result from an increase in the zonal gradient of pressure at low levels. In contrast, when soil moisture is increased, smaller circulation changes are found, although there appears to be a local feedback effect between the land and precipitation. The combined effects of changes in the circulation and in local stratification induced by soil wetness modifications, through variations in evaporation and Convective Available Potential Energy (CAPE), are in agreement with what has been found by other studies, resulting in coherent modifications of precipitation when variations of CAPE and moisture flux convergence mutually reinforce.


2016 ◽  
Vol 20 (10) ◽  
pp. 4237-4264 ◽  
Author(s):  
Kaniska Mallick ◽  
Ivonne Trebs ◽  
Eva Boegh ◽  
Laura Giustarini ◽  
Martin Schlerf ◽  
...  

Abstract. Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman–Monteith and Shuttleworth–Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy–atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land–surface–atmosphere exchange parameterizations across a range of spatial scales.


2014 ◽  
Vol 15 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Randal D. Koster ◽  
Gregory K. Walker ◽  
Sarith P. P. Mahanama ◽  
Rolf H. Reichle

Abstract Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in large-scale seasonal streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, for example, through the assimilation of satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale seasonal streamflow forecasts only when evaporation variance is significant relative to precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface–modeling system as a tool for addressing the science of hydrological prediction.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


2018 ◽  
Vol 22 (9) ◽  
pp. 4815-4842 ◽  
Author(s):  
Vinícius A. Siqueira ◽  
Rodrigo C. D. Paiva ◽  
Ayan S. Fleischmann ◽  
Fernando M. Fan ◽  
Anderson L. Ruhoff ◽  
...  

Abstract. Providing reliable estimates of streamflow and hydrological fluxes is a major challenge for water resources management over national and transnational basins in South America. Global hydrological models and land surface models are a possible solution to simulate the terrestrial water cycle at the continental scale, but issues about parameterization and limitations in representing lowland river systems can place constraints on these models to meet local needs. In an attempt to overcome such limitations, we extended a regional, fully coupled hydrologic–hydrodynamic model (MGB; Modelo hidrológico de Grandes Bacias) to the continental domain of South America and assessed its performance using daily river discharge, water levels from independent sources (in situ, satellite altimetry), estimates of terrestrial water storage (TWS) and evapotranspiration (ET) from remote sensing and other available global datasets. In addition, river discharge was compared with outputs from global models acquired through the eartH2Observe project (HTESSEL/CaMa-Flood, LISFLOOD and WaterGAP3), providing the first cross-scale assessment (regional/continental  ×  global models) that makes use of spatially distributed, daily discharge data. A satisfactory representation of discharge and water levels was obtained (Nash–Sutcliffe efficiency, NSE > 0.6 in 55 % of the cases) and the continental model was able to capture patterns of seasonality and magnitude of TWS and ET, especially over the largest basins of South America. After the comparison with global models, we found that it is possible to obtain considerable improvement on daily river discharge, even by using current global forcing data, just by combining parameterization and better routing physics based on regional experience. Issues about the potential sources of errors related to both global- and continental-scale modeling are discussed, as well as future directions for improving large-scale model applications in this continent. We hope that our study provides important insights to reduce the gap between global and regional hydrological modeling communities.


2013 ◽  
Vol 17 (3) ◽  
pp. 1177-1188 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Rich Ellis ◽  
Ewan Pinnington ◽  
...  

Abstract. Soil moisture predictions from land surface models are important in hydrological, ecological and meteorological applications. In recent years the availability of wide-area soil-moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in-situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the JULES land surface model using field scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way can improve the performance of land surface models, leading to the potential for better flood, drought and climate projections.


2015 ◽  
Vol 16 (4) ◽  
pp. 1502-1520 ◽  
Author(s):  
Elizabeth A. Clark ◽  
Justin Sheffield ◽  
Michelle T. H. van Vliet ◽  
Bart Nijssen ◽  
Dennis P. Lettenmaier

Abstract A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.


Author(s):  
Jose A. Marengo ◽  
Carlos A. Nobre

The Amazon region is of particular interest because it represents a large source of heat in the tropics and has been shown to have a significant impact on extratropical circulation, and it is Earth’s largest and most intense land-based convective center. During the Southern Hemisphere summer when convection is best developed, the Amazon basin is one of the wettest regions on Earth. Amazonia is of course not isolated from the rest of the world, and a global perspective is needed to understand the nature and causes of climatological anomalies in Amazonia and how they feed back to influence the global climate system. The Amazon River system is the single, largest source of freshwater on Earth. The flow regime of this river system is relatively unimpacted by humans (Vörösmarty et al. 1997 a, b) and is subject to interannual variability in tropical precipitation that ultimately is translated into large variations in downstream hydrographs (Marengo et al. 1998a, Vörösmarty et al. 1996, Richey et al. 1989a, b). The recycling of local evaporation and precipitation by the forest accounts for a sizable portion of the regional water budget (Nobre et al. 1991, Eltahir 1996), and as large areas of the basin are subject to active deforestation there is grave concern about how such land surface disruptions may affect the water cycle in the tropics (see reviews in Lean et al. 1996). Previous studies have emphasized either how large-scale atmospheric circulation or land surface conditions can directly control the seasonal changes in rainfall producing mechanisms. Studies invoking controls of convection and rainfall by large-scale circulation emphasize the relationship between the establishment of upper-tropospheric circulation over Bolivia and moisture transport from the Atlantic ocean for initiation of the wet season and its intensity (see reviews in Marengo et al. 1999). On the other hand, Eltahir and Pal (1996) have shown that Amazon convection is closely related to land surface humidity and temperature, while Fu et al. (1999) indicate that the wet season in the Amazon basin is controlled by both changes in land surface temperature and the sea surface temperature (SST) in the adjacent oceans, depending if the region is north-equatorial or southern Amazonia.


Sign in / Sign up

Export Citation Format

Share Document