scholarly journals Effect of Teleconnected Land–Atmosphere Coupling on Northeast China Persistent Drought in Spring–Summer of 2017

2019 ◽  
Vol 32 (21) ◽  
pp. 7403-7420 ◽  
Author(s):  
Dingwen Zeng ◽  
Xing Yuan ◽  
Joshua K. Roundy

Northeast China (NEC) suffered a severe drought that persisted from March to July of 2017 with profound impacts on agriculture and society, raising an urgent need to understand the mechanism for persistent droughts over midlatitudes. Previous drought mechanism studies focused on either large-scale teleconnections or local land–atmosphere coupling, while less attention was paid to their synergistic effects on drought persistence. Here we show that the 2017 NEC drought was triggered by a strong positive phase of the Arctic Oscillation in March, and maintained by the anticyclone over the area south to Lake Baikal (ASLB) through a quasi-stationary Rossby wave in April–July, accompanied by sinking motion and north wind anomaly. By using a land–atmosphere coupling index based on the persistence of positive feedbacks between the boundary layer and land surface, we find that the coupling states over NEC and ASLB shifted from a wet coupling in March to a persistently strengthened dry coupling in April–July. Over ASLB, the dry coupling and sinking motion increased surface sensible heat, decreased cloud cover, and weakened longwave absorption, resulting in a diabatic heating anomaly in the lower atmosphere and a diabatic cooling anomaly in the upper atmosphere. This anomalous vertical heating profile led to a negative anomaly of potential vorticity at low levels, indicating that the land–atmosphere coupling had a phase-lock effect on the Rossby wave train originating from upstream areas, and therefore maintained the NEC drought over downstream regions. Our study suggests that an upstream quasi-stationary wave pattern strengthened by land–atmosphere coupling should be considered in diagnosing persistent droughts, especially over northern midlatitudes.

2020 ◽  
Author(s):  
dingwen zeng ◽  
xing yuan

<p>Northeast China (NEC) suffered its worst persistent drought event in recent decades from March to July of 2017 with devastating impacts on the environment and agriculture. Previous drought mechanism studies focused on the atmospheric remote response to Arctic sea ice and ENSO, while less attention was paid to synergistic effects of large-scale teleconnections and local land-atmosphere coupling. Here we show that a strong positive phase of Arctic Oscillation in March triggered the NEC drought, and a quasi-stationary Rossby wave train maintained the drought with an anticyclone located over the area south to Lake Baikal (ASLB) in April-July. By using a land-atmosphere coupling index based on the persistence of positive feedback between boundary layer and land surface, we find that the NEC and ASLB experienced a wet coupling in March while a persistently strengthened dry coupling in April-July. Over ASLB, the dry coupling and sinking motion increased surface sensible heat, decreased cloud cover, and weakened longwave absorption, resulting in a diabatic heating anomaly in the lower atmosphere and a diabatic cooling anomaly in the upper atmosphere. This anomalous vertical heating profile generated a negative anomaly of potential vorticity, indicating that the land-atmosphere coupling had a phase-lock effect on the Rossby wave train originating from upstream areas, and therefore maintained the NEC drought over downstream regions. Numerical simulations with and without surface sensible heating are being conducted to verify the influence of teleconnected land-atmosphere coupling, i.e., dry land conditions over ASLB in May can cause positive height anomaly over ASLB and NEC during June-July through heating the low level atmosphere. Our study suggests that upstream quasi-stationary wave pattern strengthened by land-atmosphere coupling should be considered in diagnosing persistent droughts especially over northern mid-latitudes.</p>


2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.


2020 ◽  
Vol 33 (9) ◽  
pp. 3619-3633 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

AbstractThe relationship between latent heating over the Greenland, Barents, and Kara Seas (GBKS hereafter) and Rossby wave propagation between the Arctic and midlatitudes is investigated using global reanalysis data. Latent heating is the focus because it is the most likely source of Rossby wave activity over the Arctic Ocean. Given that the Rossby wave time scale is on the order of several days, the analysis is carried out using a daily latent heating index that resembles the interdecadal latent heating trend during the winter season. The results from regression calculations find a trans-Arctic Rossby wave train that propagates from the subtropics, through the midlatitudes, into the Arctic, and then back into midlatitudes over a period of about 10 days. Upon entering the GBKS, this wave train transports moisture into the region, resulting in anomalous latent heat release. At high latitudes, the overlapping of a negative latent heating anomaly with an anomalous high is consistent with anomalous latent heat release fueling the Rossby wave train before it propagates back into the midlatitudes. This implies that the Rossby wave propagation from the Arctic into the midlatitudes arises from trans-Arctic wave propagation rather than from in situ generation. The method used indicates the variance of the trans-Arctic wave train, but not in situ generation, and implies that the variance of the former is greater than that of latter. Furthermore, GBKS sea ice concentration regression against the latent heating index shows the largest negative value six days afterward, indicating that sea ice loss contributes little to the latent heating.


2006 ◽  
Vol 63 (5) ◽  
pp. 1377-1389 ◽  
Author(s):  
Tim Li ◽  
Bing Fu

Abstract The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data. Among 34 cyclogenesis cases analyzed in the western North Pacific during 2000–01 typhoon seasons, six cases are associated with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest–southeast direction, with alternating cyclonic and anticyclonic vorticity circulation. A typical wavelength of the wave train is about 2500 km. The TC genesis is observed in the cyclonic circulation region of the wave train, possibly through a scale contraction process. The satellite data analyses reveal that not all TCs have a Rossby wave train in their wakes. The occurrence of the Rossby wave train depends to a certain extent on the TC intensity and the background flow. Whether or not a Rossby wave train can finally lead to cyclogenesis depends on large-scale dynamic and thermodynamic conditions related to both the change of the seasonal mean state and the phase of the tropical intraseasonal oscillation. Stronger low-level convergence and cyclonic vorticity, weaker vertical shear, and greater midtropospheric moisture are among the favorable large-scale conditions. The rebuilding process of a conditional unstable stratification is important in regulating the frequency of TC genesis.


2019 ◽  
Author(s):  
Marcelo Zamuriano ◽  
Paul Froidevaux ◽  
Isabel Moreno ◽  
Mathias Vuille ◽  
Stefan Brönnimann

Abstract. We study the synoptic and mesoscale characteristics of a snowfall event over the Bolivian Altiplano in August 2013 that caused severe damage to people, infrastructure and livestock. This event was associated with a cold front episode following the eastern slope of the Andes-Amazon interface and a cut-off low pressure system (COL) over the Pacific Ocean. Large scale analyses suggest a two-stage mechanism: The first phase consisted of a strong cold surge to the east of the Andes inducing low level blocking of southward moisture transport over the SW Amazon basin due to post-frontal high-pressure up to 500 hPa synchronized to a Rossby wave train. The second stage was initiated by the displacement of 500 hPa anticyclone over the Andes due to a Rossby wave passage and a subsequent increase in north-easterly moisture transport, while another cold front along the eastern Andes provided additional lifting. We analyse an analog event (July 2010) to confirm the influence of these large-scale features on snow formation. We conduct a mesoscale analysis using the Weather Research and Forecasting (WRF-ARW) model. For this purpose, we perform a series of high-resolution numerical experiments that include sensitivity studies where we apply orographic and lake Titicaca temperature modifications. We compare our findings to MODIS snow cover estimates and in-situ measurements. The control simulation is able to capture the snow cover spatial distribution and sheds light over several aspects of the snowfall dynamics. In our WRF simulations, daytime snowfall mainly occurs around complex orography whereas nocturnal snowfall is concentrated over the plateau due to a combination of nocturnal winds and complex orography inside the plateau. The sensitivity experiments indicate the importance of the lake and mountain for thermal wind circulation affecting the spatial distribution of snowfall by shifting the position of the convergence zones. The influence of the lake's thermal effect is not evident around the regions surrounding the lake.


2012 ◽  
Vol 13 (1) ◽  
pp. 392-403 ◽  
Author(s):  
William K. M. Lau ◽  
Kyu-Myong Kim

Abstract In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave–wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China–Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.


2016 ◽  
Vol 73 (3) ◽  
pp. 1143-1158 ◽  
Author(s):  
Matthew D. Flournoy ◽  
Steven B. Feldstein ◽  
Sukyoung Lee ◽  
Eugene E. Clothiaux

Abstract The Tropically Excited Arctic Warming (TEAM) mechanism ascribes warming of the Arctic surface to tropical convection, which excites poleward-propagating Rossby wave trains that transport water vapor and heat into the Arctic. A crucial component of the TEAM mechanism is the increase in downward infrared radiation (IR) that precedes the Arctic warming. Previous studies have examined the downward IR associated with the TEAM mechanism using reanalysis data. To corroborate previous findings, this study examines the linkage between tropical convection, Rossby wave trains, and downward IR with Baseline Surface Radiation Network (BSRN) downward IR station data. The physical processes that drive changes in the downward IR are also investigated by regressing 300-hPa geopotential height, outgoing longwave radiation, water vapor flux, ERA-Interim downward IR, and other key variables against the BSRN downward IR at Barrow, Alaska, and Ny-Ålesund, Spitsbergen. Both the Barrow and the Ny-Ålesund station downward IR anomalies are preceded by anomalous tropical convection and poleward-propagating Rossby wave trains. The wave train associated with Barrow resembles the Pacific–North America teleconnection pattern, and that for Ny-Ålesund corresponds to a northwestern Atlantic wave train. It is found that both wave trains promote warm and moist advection from the midlatitudes into the Arctic. The resulting water vapor flux convergence, multiplied by the latent heat of vaporization, closely resembles the regressed ERA-Interim downward IR. These results suggest that the combination of warm advection, latent heat release, and increased cloudiness all contribute toward an increase in downward IR.


2011 ◽  
Vol 68 (5) ◽  
pp. 954-963 ◽  
Author(s):  
Tim Woollings ◽  
Joaquim G. Pinto ◽  
João A. Santos

Abstract The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.


2014 ◽  
Vol 27 (2) ◽  
pp. 527-550 ◽  
Author(s):  
Justin J. Wettstein ◽  
Clara Deser

Abstract Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.


2010 ◽  
Vol 138 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Xuyang Ge ◽  
Tim Li ◽  
Melinda S. Peng

Abstract The genesis of Typhoon Prapiroon (2000), in the western North Pacific, is simulated to understand the role of Rossby wave energy dispersion of a preexisting tropical cyclone (TC) in the subsequent genesis event. Two experiments are conducted. In the control experiment (CTL), the authors retain both the previous typhoon, Typhoon Bilis, and its wave train in the initial condition. In the sensitivity experiment (EXP), the circulation of Typhoon Bilis was removed based on a spatial filtering technique of Kurihara et al., while the wave train in the wake is kept. The comparison between these two numerical simulations demonstrates that the preexisting TC impacts the subsequent TC genesis through both a direct and an indirect process. The direct process is through the conventional barotropic Rossby wave energy dispersion, which enhances the low-level wave train, the boundary layer convergence, and the convection–circulation feedback. The indirect process is through the upper-level outflow jet. The asymmetric outflow jet induces a secondary circulation with a strong divergence tendency to the left-exit side of the outflow jet. The upper-level divergence boosts large-scale ascending motion and promotes favorable environmental conditions for a TC-scale vortex development. In addition, the outflow jet induces a well-organized cyclonic eddy angular momentum flux, which acts as a momentum forcing that enhances the upper-level outflow and low-level inflow and favors the growth of the new TC.


Sign in / Sign up

Export Citation Format

Share Document