scholarly journals An Analytical Model for Spatially Varying Clear-Sky CO2 Forcing

2021 ◽  
pp. 1-55
Author(s):  
Nadir Jeevanjee ◽  
Jacob T. Seeley ◽  
David Paynter ◽  
Stephan Fueglistaler

AbstractClear-sky CO2 forcing is known to vary significantly over the globe, but the state dependence which controls this is not well understood. Here we extend the formalism of Wilson and Gea-Banacloche (2012) to obtain a quantitatively accurate analytical model for spatially-varying instantaneous CO2 forcing, which depends only on surface temperature Ts, stratospheric temperature, and column relative humidity RH. This model shows that CO2 forcing can be considered a swap of surface emission for stratospheric emission, and thus depends primarily on surface-stratosphere temperature contrast. The strong meridional gradient in CO2 forcing is thus largely due to the strong meridional gradient in Ts. In the tropics and mid-latitudes, however, the presence of H2O modulates the forcing by replacing surface emission with RH-dependent atmospheric emission. This substantially reduces the forcing in the tropics, introduces forcing variations due to spatially-varying RH, and sets an upper limit (with respect to Ts variations) on CO2 forcing which is reached in the present-day tropics.In addition, we extend our analytical model to the instantaneous tropopause forcing, and find that this forcing depends on Ts only, with no dependence on stratospheric temperature. We also analyze the ‘τ = 1’ approximation for the emission level, and derive an exact formula for the emission level which yields values closer to τ = 1/2 than to τ = 1.

2012 ◽  
Vol 69 (6) ◽  
pp. 1865-1870 ◽  
Author(s):  
S. M. S. Costa ◽  
K. P. Shine

Abstract A frequently used diagram summarizing the annual- and global-mean energy budget of the earth and atmosphere indicates that the irradiance reaching the top of the atmosphere from the surface, through the midinfrared atmospheric window, is 40 W m−2; this can be compared to the total outgoing longwave radiation (OLR) of about 235 W m−2. The value of 40 W m−2 was estimated in an ad hoc manner. A more detailed calculation of this component, termed here the surface transmitted irradiance (STI), is presented, using a line-by-line radiation code and 3D climatologies of temperature, humidity, cloudiness, etc. No assumption is made as to the wavelengths at which radiation from the surface can reach the top of the atmosphere. The role of the water vapor continuum is highlighted. In clear skies, if the continuum is excluded, the global- and annual-mean STI is calculated to be about 100 W m−2 with a broad maximum throughout the tropics and subtropics. When the continuum is included, the clear-sky STI is reduced to 66 W m−2, with a distinctly different geographic distribution, with a minimum in the tropics and local peaks over subtropical deserts. The inclusion of clouds reduces the STI to about 22 W m−2. The actual value is likely somewhat smaller due to processes neglected here, and an STI value of 20 W m−2 (with an estimated uncertainty of about ±20%) is suggested to be much more realistic than the previous estimate of 40 W m−2. This indicates that less than one-tenth of the OLR originates directly from the surface.


2008 ◽  
Vol 21 (9) ◽  
pp. 1863-1875 ◽  
Author(s):  
Stephen Leroy ◽  
James Anderson ◽  
John Dykema ◽  
Richard Goody

Abstract An approach to test climate models with observations is presented. In this approach, it is possible to directly observe the longwave feedbacks of the climate system in time series of annual average outgoing longwave spectra. Tropospheric temperature, stratospheric temperature, water vapor, and carbon dioxide have clear and distinctive signatures in the infrared spectrum, and it is possible to detect trends of these signals unambiguously from trends in the outgoing longwave spectrum by optimal detection techniques. This approach is applied to clear-sky data in the tropics simulated from the output of an ensemble of climate models. Estimates of the water vapor–longwave feedback by this approach agree to within estimated errors with truth, and it is likely that an uncertainty of 50% can be obtained in 20 yr of a continuous time series. The correlation of tropospheric temperature and water vapor anomalies can provide a constraint on the water vapor–longwave feedback to 5% uncertainty in 20 yr, or 7% in 10 yr. Thus, it should be possible to place a strong constraint on climate models, which currently show a range of 30% in the water vapor–longwave feedback, in just 10 yr. These results may not hold in the presence of clouds, however, and so it may be necessary to supplement time series of outgoing longwave spectra with GPS radio occultation data, which are insensitive to clouds.


2021 ◽  
Author(s):  
Nadir Jeevanjee ◽  
Jacob Seeley ◽  
David Paynter ◽  
Stephan Fueglistaler

<p>Instantaneous clear-sky CO2 forcing is known to vary significantly over the globe, but the climate factors which control this are not well understood. Building upon the work of Wilson (2012), we build a first-principles, analytical model for CO2 forcing which requires as input only the temperatures at the surface and roughly 20 hPa, as well as column relative humidity. This model quantitatively captures global variations in clear-sky CO2 forcing, and shows that the meridional forcing gradient is predominantly due to the meridional surface temperature gradient, with modulation by water vapor. In particular, the Simpsonian behavior of water vapor emission implies an upper bound on CO2 forcing (with respect to surface temperature) which is realized in the present day tropics.</p>


2019 ◽  
Author(s):  
Nadir Jeevanjee ◽  
Jacob Seeley ◽  
David Paynter ◽  
Stephan Fueglistaler

2021 ◽  
pp. 1-62
Author(s):  
Aiden Jönsson ◽  
Frida A.-M. Bender

AbstractDespite the unequal partitioning of land and aerosol sources between the hemispheres, Earth’s albedo is observed to be persistently symmetric about the equator. This symmetry is determined by the compensation of clouds to the clear-sky albedo. Here, the variability of this inter-hemispheric albedo symmetry is explored by decomposing observed radiative fluxes in the CERES EBAF satellite data record into components reflected by the atmosphere, clouds, and the surface. We find that the degree of inter-hemispheric albedo symmetry has not changed significantly throughout the observational record. The variability of the inter-hemispheric difference in reflected solar radiation (asymmetry) is strongly determined by tropical and subtropical cloud cover, particularly those related to non-neutral phases of the El Niño-Southern Oscillation (ENSO). As the ENSO is the most significant source of interannual variability in reflected radiation on a global scale, this underscores the inter-hemispheric albedo symmetry as a robust feature of Earth’s current annual mean climate. Comparing this feature in observations with simulations from coupled models reveals that the degree of modeled albedo symmetry is mostly dependent on biases in reflected radiation in the midlatitudes, and that models that overestimate its variability the most have larger biases in reflected radiation in the tropics. The degree of model albedo symmetry is improved when driven with historical sea surface temperatures, indicating that the degree of symmetry in Earth’s albedo is dependent on the representation of cloud responses to coupled ocean-atmosphere processes.


2012 ◽  
Vol 9 (2) ◽  
pp. 611-648 ◽  
Author(s):  
A. Storto ◽  
I. Russo ◽  
S. Masina

Abstract. We present a methodology to correct precipitation fluxes from the ECMWF atmospheric reanalysis (ERA-Interim) for oceanographic applications. The correction is performed by means of a spatially varying monthly climatological coefficient, computed within the period 1989–2008 by comparison between ERA-Interim and a satellite-based passive microwave precipitation product. ERA-Interim exhibits a systematic over-estimation of precipitation within the inter-tropical convergence zones (up to 3 mm d−1) and under-estimation at mid- and high- latitudes (up to −4 mm d−1). The correction has been validated within eddy-permitting resolution global ocean hindcasts (1989–2009), demonstrating the ability of our strategy in attenuating the 20-yr mean global EMP negative imbalance by 16%, reducing the near-surface salinity fresh bias in the Tropics up to 1 psu and improving the representation of the sea level interannual variability, with an SSH error decrease of 8%. The ocean circulation is also proved to benefit from the correction, especially in correspondence of the Antarctic Circumpolar Current, where the error in the near-surface current speed decreases by a 9%. Finally, we show that the correction leads to volume and freshwater transports that better agree with independent estimates.


2010 ◽  
Vol 10 (6) ◽  
pp. 16277-16305
Author(s):  
I. Pisso ◽  
P. H. Haynes ◽  
K. S. Law

Abstract. We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and season variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from South and South-East Asia during Northern Hemisphere summer and from the Western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with also non-negligible values extending into northern mid-latitudes particularly in the summer. These first estimates, which include some simplifying assumptions, show larger ODP values than previous studies, particularly over Southern Asia, suggesting that emissions of short-lived halogen source gases in certain geographical regions could have a significant impact on stratospheric ozone depletion.


2014 ◽  
Vol 32 (8) ◽  
pp. 935-949 ◽  
Author(s):  
F. T. Huang ◽  
H. G. Mayr ◽  
J. M. Russell ◽  
M. G. Mlynczak

Abstract. We have derived ozone and temperature trends from years 2002 through 2012, from 20 to 100 km altitude, and 48° S to 48° N latitude, based on measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite. For the first time, trends of ozone and temperature measured at the same times and locations are obtained, and their correlations should provide useful information about the relative importance of photochemistry versus dynamics over the longer term. We are not aware of comparable results covering this time period and spatial extent. For stratospheric ozone, until the late 1990s, previous studies found negative trends (decreasing amounts). In recent years, some empirical and modeling studies have shown the occurrence of a turnaround in the decreasing ozone, possibly beginning in the late 1990s, suggesting that the stratospheric ozone trend is leveling off or even turning positive. Our global results add more definitive evidence, expand the coverage, and show that at mid-latitudes (north and south) in the stratosphere, the ozone trends are indeed positive, with ozone having increased by a few percent from 2002 through 2012. However, in the tropics, we find negative ozone trends between 25 and 50 km. For stratospheric temperatures, the trends are mostly negatively correlated to the ozone trends. The temperature trends are positive in the tropics between 30 and 40 km, and between 20 and 25 km, at approximately 24° N and at 24° S latitude. The stratospheric temperature trends are otherwise mostly negative. In the mesosphere, the ozone trends are mostly flat, with suggestions of small positive trends at lower latitudes. The temperature trends in this region are mostly negative, showing decreases of up to ~ −3 K decade−1. In the lower thermosphere (between ~ 85 and 100 km), ozone and temperature trends are both negative. The ozone trend can approach ~ −10% decade−1, and the temperature trend can approach ~ −3 K decade−1. Aside from trends, these patterns of ozone–temperature correlations are consistent with previous studies of ozone and temperature perturbations such as the quasi-biennial (QBO) and semiannual (SAO) oscillations, and add confidence to the results.


2017 ◽  
Vol 30 (7) ◽  
pp. 2523-2534 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Lei Wang ◽  
Valentina Aquila ◽  
Darryn W. Waugh

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979–97 tropical ozone trends are believed to originate from enhanced upwelling, which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. This study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, argues that trends in ozone-depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone-depleting substances are key drivers of tropical upwelling and, more generally, of the entire Brewer–Dobson circulation.


2011 ◽  
Vol 4 (9) ◽  
pp. 1965-1977 ◽  
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
U. Foelsche ◽  
L. Haimberger ◽  
C. Tavolato ◽  
...  

Abstract. Uncertainties for upper-air trend patterns are still substantial. Observations from the radio occultation (RO) technique offer new opportunities to assess the existing observational records there. Long-term time series are available from radiosondes and from the (Advanced) Microwave Sounding Unit (A)MSU. None of them were originally intended to deliver data for climate applications. Demanding intercalibration and homogenization procedures are required to account for changes in instrumentation and observation techniques. In this comparative study three (A)MSU anomaly time series and two homogenized radiosonde records are compared to RO data from the CHAMP, SAC-C, GRACE-A and F3C missions for September 2001 to December 2010. Differences of monthly anomalies are examined to assess the differences in the datasets due to structural uncertainties. The difference of anomalies of the (A)MSU datasets relative to RO shows a statistically significant trend within about (−0.2±0.1) K/10 yr (95% confidence interval) at all latitudes. This signals a systematic deviation of the two datasets over time. The radiosonde network has known deficiencies in its global coverage, with sparse representation of most of the southern hemisphere, the tropics and the oceans. In this study the error that results from sparse sampling is estimated and accounted for by subtracting it from radiosonde and RO datasets. Surprisingly the sampling error correction is also important in the Northern Hemisphere (NH), where the radiosonde network is dense over the continents but does not capture large atmospheric variations in NH winter. Considering the sampling error, the consistency of radiosonde and RO anomalies is improving substantially; the trend in the anomaly differences is generally very small. Regarding (A)MSU, its poor vertical resolution poses another problem by missing important features of the vertical atmospheric structure. This points to the advantage of homogeneously distributed measurements with high vertical resolution.


Sign in / Sign up

Export Citation Format

Share Document