scholarly journals A New Look at the Variance of Summertime Temperatures over Land

2020 ◽  
Vol 33 (13) ◽  
pp. 5465-5477 ◽  
Author(s):  
Lucas R. Vargas Zeppetello ◽  
David S. Battisti ◽  
Marcia B. Baker

AbstractThe increasing frequency of very high summertime temperatures has motivated growing interest in the processes determining the probability distribution of surface temperature over land. Here, we show that on monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations in shortwave radiation and precipitation. Our model contains only three adjustable parameters, and, surprisingly, these can be taken as constant across the globe, notwithstanding large spatial variability in topography, vegetation, and hydrological processes. Using observations of shortwave radiation and precipitation from 2000 to 2017, the model accurately reproduces the observed pattern of temperature variance throughout the Northern Hemisphere midlatitudes. In addition, the variance in latent heat flux estimated by the model agrees well with the few long-term records that are available in the central United States. As an application of the model, we investigate the changes in the variance of monthly averaged surface temperature that might be expected due to anthropogenic climate change. We find that a climatic warming of 4°C causes a 10% increase in temperature variance in parts of North America.

2017 ◽  
Vol 56 (10) ◽  
pp. 2869-2881
Author(s):  
Janel Hanrahan ◽  
Alexandria Maynard ◽  
Sarah Y. Murphy ◽  
Colton Zercher ◽  
Allison Fitzpatrick

AbstractAs demand for renewable energy grows, so does the need for an improved understanding of renewable energy sources. Paradoxically, the climate change mitigation strategy of fossil fuel divestment is in itself subject to shifts in weather patterns resulting from climate change. This is particularly true with solar power, which depends on local cloud cover. However, because observed shortwave radiation data usually span a decade or less, persistent long-term trends may not be identified. A simple linear regression model is created here using diurnal temperature range (DTR) during 2002–15 as a predictor variable to estimate long-term shortwave radiation (SR) values in the northeastern United States. Using an extended DTR dataset, SR values are computed for 1956–2015. Statistically significant decreases in shortwave radiation are identified that are dominated by changes during the summer months. Because this coincides with the season of greatest insolation and the highest potential for energy production, financial implications may be large for the solar energy industry if such trends persist into the future.


2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


2019 ◽  
Vol 23 (4) ◽  
pp. 2093-2109 ◽  
Author(s):  
Dongsheng Su ◽  
Xiuqing Hu ◽  
Lijuan Wen ◽  
Shihua Lyu ◽  
Xiaoqing Gao ◽  
...  

Abstract. Lakes are sensitive indicators of climate change. There are thousands of lakes on the Tibetan Plateau (TP), and more than 1200 of them have an area larger than 1 km2; they respond quickly to climate change, but few observation data of lakes are available. Therefore, the thermal condition of the plateau lakes under the background of climate warming remains poorly understood. In this study, the China regional surface meteorological feature dataset developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), MODIS lake surface temperature (LST) data and buoy observation data were used to evaluate the performance of lake model FLake, extended by simple parameterizations of the salinity effect, for brackish lake and to reveal the response of thermal conditions, radiation and heat balance of Qinghai Lake to the recent climate change. The results demonstrated that the FLake has good ability in capturing the seasonal variations in the lake surface temperature and the internal thermal structure of Qinghai Lake. The simulated lake surface temperature showed an increasing trend from 1979 to 2012, positively correlated with the air temperature and the downward longwave radiation while negatively correlated with the wind speed and downward shortwave radiation. The simulated internal thermodynamic structure revealed that Qinghai Lake is a dimictic lake with two overturn periods occurring in late spring and late autumn. The surface and mean water temperatures of the lake significantly increased from 1979 to 2012, while the bottom temperatures showed no significant trend, even decreasing slightly from 1989 to 2012. The warming was the strongest in winter for both the lake surface and air temperature. With the warming of the climate, the later ice-on and earlier ice-off trend was simulated in the lake, significantly influencing the interannual and seasonal variability in radiation and heat flux. The annual average net shortwave radiation and latent heat flux (LH) both increase obviously while the net longwave radiation and sensible heat flux (SH) decrease slightly. Earlier ice-off leads to more energy absorption mainly in the form of shortwave radiation during the thawing period, and later ice-on leads to more energy release in the form of longwave radiation, SH and LH during the ice formation period. Meanwhile, the lake–air temperature difference increased in both periods due to shortening ice duration.


2021 ◽  
Author(s):  
Aravind Chandh ◽  
Oleksandr Bibik ◽  
Subodh Adhikari ◽  
David Wu ◽  
Tim Lieuwen ◽  
...  

Abstract In this paper, we discuss the development of a non-intrusive surface temperature sensor based on long-wavelength infrared (LWIR) hyperspectral technology. The LWIR detection enables to minimize optical interferences from hot combustion gases (emission mostly within UV-MWIR region). Utilization of hyperspectral detection allows to further improve temperature measurement accuracy and precision. The developed sensor with fiber coupling provides the required flexibility to be maneuvered around/through combustor hardware. The LWIR fiber probe is fully protected by the custom-designed water-cooled probe housing. This device is designed to sustain temperature of 2400 K at pressure of 50 bar, which enables long-term optical diagnostics inside the practical high-pressure combustion facilities where extreme thermal acoustic perturbation and intense heat fluxes are present. The housing featured a diamond window to selectively measure spectra in the LWIR region to get accurate surface temperature exclusively of the combustor wall. The probe was installed into a RQL style combustor to get surface temperature of both hot and cold side of the combustor wall. Further, pointwise heat flux estimates across the combustion liner wall was derived using the temperature measurements.


2021 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou

<p>As an important indicator of land-atmosphere energy interaction, land surface temperature (LST) plays an important role in the research of climate change, hydrology, and various land surface processes. Compared with traditional ground-based observation, satellite remote sensing provides the possibility to retrieve LST more efficiently over a global scale. Since the lack of global LST before, Ma et al., (2020) released a global 0.05 ×0.05  long-term (1981-2000) LST based on NOAA-7/9/11/14 AVHRR. The dataset includes three layers: (1) instantaneous LST, a product generated based on an ensemble of several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST at 14:30 solar time; and (3) monthly averages of ODC LST. To meet the requirement of the long-term application, e.g. climate change, the period of the LST is extended from 1981-2000 to 1981-2020 in this study. The LST from 2001 to 2020 are retrieved from NOAA-16/18/19 AVHRR with the same algorithm for NOAA-7/8/11/14 AVHRR. The train and test results based on the simulation data from SeeBor and TIGR atmospheric profiles show that the accuracy of the RF-SWA method for the three sensors is consistent with the previous four sensors, i.e. the mean bias error and standard deviation less than 0.10 K and 1.10 K, respectively, under the assumption that the maximum emissivity and water vapor content uncertainties are 0.04 and 1.0 g/cm<sup>2</sup>, respectively. The preliminary validation against <em>in-situ</em> LST also shows a similar accuracy, indicating that the accuracy of LST from 1981 to 2020 are consistent with each other. In the generation code, the new LST has been improved in terms of land surface emissivity estimation, identification of cloud pixel, and the ODC method in order to generate a more reliable LST dataset. Up to now, the new version LST product (1981-2020) is under generating and will be released soon in support of the scientific research community.</p>


2020 ◽  
Author(s):  
Benjamin Martinez-Lopez

<p>Sea surface temperature (SST) is the only oceanic parameter on which depend heat fluxes between ocean and atmosphere and, therefore, SST is one of the key factors that influence climate and its variability. Over the twentieth century, SSTs have significantly increased around the global ocean, warming that has been attributed to anthropogenic climate change, although it is not yet clear how much of it is related to natural causes and how much is due to human activities. A considerable part of available literature regarding climate change has been built based on the global or hemispheric analysis of surface temperature trends. There are, however, some key open questions that need to be answered and for this task estimates of long-term SST trend patterns represent a source of valuable information. Unfortunately, long-term SST trend patterns have large uncertainties and although SST constitutes one of the most-measured ocean variables of our historic records, their poor spatial and temporal sampling, as well as inhomogeneous measurements technics, hinder an accurate determination of long-term SST trends, which increases their uncertainty and, therefore, limit their physical interpretation as well as their use in the verification of climate simulations.<br>Most of the long-term SST trend patterns have been built using linear techniques, which are very usefull when they are used to extract information of measurements satisfying two key assumptions: linearity and stationarity. The global warming resulting of our economic activities, however, affect the state of the World Ocean and the atmosphere inducing changes in the climate that may result in oscillatory modes of variability of different frequencies, which may undergo non-stationary and non-linear evolutions. In this work, we construct long-term SST trend patterns by using non-linear techniques to extract non-linear, long-term trends in each grid-point of two available global SST datasets: the National Oceanic and Atmospheric Administration Extended Reconstructed SST (ERSST) and from the Hadley Centre sea ice and SST (HadISST). The used non-linear technique makes a good job even if the SST data are non-linear and non-stationary. Additionally, the nonlinearity of the extracted trends allows the use of the first and second derivative to get more information about the global, long-term evolution of the SST fields, favoring thus a deeper understanding and interpretation of the observed changes in SST. Particularly, our results clearly show, in both ERSST and HadISST datasets, the non-uniform warming observed in the tropical Pacific, which seems to be related to the enhanced vertical heat flux in the eastern equatorial Pacific and the strengthening of the warm pool in the western Pacific. By using the second derivative of the nonlinear SST trends, emerges an interesting pattern delimiting several zones in the Pacific Ocean which have been responded in a different way to the impose warming of the last century.</p>


2008 ◽  
Vol 21 (5) ◽  
pp. 923-937 ◽  
Author(s):  
Jiafeng Wang ◽  
Xuebin Zhang

Abstract Large-scale atmospheric variables have been statistically downscaled to derive winter (December–March) maximum daily precipitation at stations over North America using the generalized extreme value distribution (GEV). Here, the leading principal components of the sea level pressure field and local specific humidity are covariates of the distribution parameters. The GEV parameters are estimated using data from 1949 to 1999 and the r-largest method. This statistical downscaling procedure is found to yield skill over the southern and northern West Coast, central United States, and areas of western and eastern Canada when tested with independent data. The projected changes in covariates or predictors are obtained from transient climate change simulations conducted with the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled General Circulation Model, version 3.1 (CGCM3.1) forced by the Intergovernmental Panel on Climate Change (IPCC) A2 forcing scenario. They are then used to derive the GEV distribution parameters for the period 2050–99. The projected frequency of the current 20-yr return maximum daily precipitation for that period suggests that extreme precipitation risk will increase heavily over the south and central United States but decrease over the Canadian prairies. The difference between the statistical downscaling results and those estimated using GCM simulation is also discussed.


2017 ◽  
Vol 68 ◽  
pp. 345-354 ◽  
Author(s):  
Mark A. Drummond ◽  
Glenn E. Griffith ◽  
Roger F. Auch ◽  
Michael P. Stier ◽  
Janis L. Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document