scholarly journals Atmosphere Driven Mass-Balance Sensitivity of Halji Glacier, Himalayas

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 426
Author(s):  
Anselm Arndt ◽  
Dieter Scherer ◽  
Christoph Schneider

The COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) was employed to investigate the relationship between the variability and sensitivity of the mass balance record of the Halji glacier, in the Himalayas, north-western Nepal, over a 40 year period since October 1981 to atmospheric drivers. COSIPY was forced with the atmospheric reanalysis dataset ERA5-Land that has been statistically downscaled to the location of an automatic weather station at the Halji glacier. Glacier mass balance simulations with air temperature and precipitation perturbations were executed and teleconnections investigated. For the mass-balance years 1982 to 2019, a mean annual glacier-wide climatic mass balance of −0.48 meters water equivalent per year (m w.e. a−1) with large interannual variability (standard deviation 0.71 m w.e. a−1) was simulated. This variability is dominated by temperature and precipitation patterns. The Halji glacier is mostly sensitive to summer temperature and monsoon-related precipitation perturbations, which is reflected in a strong correlation with albedo. According to the simulations, the climate sensitivity with respect to either positive or negative air temperature and precipitation changes is nonlinear: A mean temperature increase (decrease) of 1 K would result in a change of the glacier-wide climatic mass balance of −1.43 m w.e. a−1 (0.99m w.e. a−1) while a precipitation increase (decrease) of 10% would cause a change of 0.45m w.e. a−1 (−0.59m w.e. a−1). Out of 22 circulation and monsoon indexes, only the Webster and Yang Monsoon index and Polar/Eurasia index provide significant correlations with the glacier-wide climatic mass balance. Based on the strong dependency of the climatic mass balance from summer season conditions, we conclude that the snow–albedo feedback in summer is crucial for the Halji glacier. This finding is also reflected in the correlation of albedo with the Webster and Yang Monsoon index.

2015 ◽  
Vol 56 (70) ◽  
pp. 79-88 ◽  
Author(s):  
Markus Engelhardt ◽  
Thomas V. Schuler ◽  
Liss M. Andreassen

AbstractThis study evaluates sensitivities of glacier mass balance and runoff to both annual and monthly perturbations in air temperature and precipitation at four highly glacierized catchments: Engabreen in northern Norway and Ålfotbreen, Nigardsbreen and Storbreen, which are aligned along a west–east profile in southern Norway. The glacier mass-balance sensitivities to changes in annual air temperature range from 1.74 m w.e. K−1 for Ålfotbreen to 0.55 m w.e. K−1 for Storbreen, the most maritime and the most continental glaciers in this study, respectively. The runoff sensitivities of all catchments are 20–25% per degree temperature change and 6–18% for a 30% precipitation change. A seasonality of the sensitivities becomes apparent. With increasing continentality, the sensitivity of mass balance and runoff to temperature perturbations during summer increases, and the sensitivity of annual runoff to both temperature and precipitation perturbations is constricted towards changes during the ablation period. Comparing sensitivities in northern and southern Norway, as well as the variability across southern Norway, reveals that continentality influences sensitivities more than latitude does.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2007 ◽  
Vol 46 ◽  
pp. 283-290 ◽  
Author(s):  
Jing Zhang ◽  
Uma S. Bhatt ◽  
Wendell V. Tangborn ◽  
Craig S. Lingle

AbstractThe response of glaciers to changing climate is explored with an atmosphere/glacier hierarchical modeling approach, in which global simulations are downscaled with an Arctic MM5 regional model which provides temperature and precipitation inputs to a glacier mass-balance model. The mass balances of Hubbard and Bering Glaciers, south-central Alaska, USA, are simulated for October 1994–September 2004. The comparisons of the mass-balance simulations using dynamically-downscaled vs observed temperature and precipitation data are in reasonably good agreement, when calibration is used to minimize systematic biases in the MM5 downscalings. The responses of the Hubbard (a large tidewater glacier) and Bering (a large surge-type glacier) mass balances to the future climate scenario CCSM3 A1B, a ‘middle-of-the-road’ future climate in which fossil and non-fossil fuels are assumed to be used in balance, are also investigated for the period October 2010–September 2018. Hubbard and Bering Glaciers are projected to have increased accumulation, particularly on the upper glaciers, and greater ablation, particularly on the lower glaciers. The annual net balance for the entire Bering Glacier is projected to be significantly more negative, on average (–2.0ma–1w.e., compared to –1.3ma–1w.e. during the hindcast), and for the entire Hubbard Glacier somewhat less positive (0.3ma–1w.e. compared to 0.4 ma–1w.e. during the hindcast). The Hubbard Glacier mass balances include an estimated iceberg calving flux of 6.5 km3 a–1, which is assumed to remain constant.


2015 ◽  
Vol 11 (2) ◽  
pp. 603-636 ◽  
Author(s):  
C. Bravo ◽  
M. Rojas ◽  
B. M. Anderson ◽  
A. N. Mackintosh ◽  
E. Sagredo ◽  
...  

Abstract. Glacier behaviour during the mid-Holocene (MH, 6000 year BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeo-climatic signals. We examine the climatic forcing of glacier expansion in the MH by evaluating modelled glacier equilibrium line altitude (ELA) and climate conditions during the MH compared with pre-industrial time (PI, year 1750) in the mid latitudes of the Southern Hemisphere, specifically in Patagonia and the South Island of New Zealand. Climate conditions for the MH are obtained from PMIP2 models simulations, which in turn force a simple glacier mass balance model to simulate changes in equilibrium-line altitude during this period. Climate conditions during the MH show significantly (p ≤ 0.05) colder temperatures in summer, autumn and winter, and significantly (p ≤ 0.05) warmer temperatures in spring. These changes are a consequence of insolation differences between the two periods. Precipitation does not show significant changes, but exhibits a temporal pattern with less precipitation from August to September and more precipitation from October to April during the MH. In response to these climatic changes, glaciers in both analysed regions have an ELA that is 15–33 m lower than PI during the MH. The main causes of this difference are the colder temperature during the MH, reinforcing previous results that mid-latitude glaciers are more sensitive to temperature change compared to precipitation changes. Differences in temperature have a dual effect on mass balance. First, during summer and early autumn less energy is available for melting. Second in late autumn and winter, lower temperatures cause more precipitation to fall as snow rather than rain, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed in the mid Holocene in both South America and New Zealand.


1997 ◽  
Vol 24 ◽  
pp. 217-222 ◽  
Author(s):  
Keith A. Brugger

A time-dependent model of glacier flow was used to predict the response of Storglaciären, a small valley glacier in northern Sweden, to different warming scenarios by imposing two possible climatic forcings: one in which temperature alone increases (T model), and one in which both temperature and precipitation increase (TP model). A range of possible changes in temperature and/or precipitation was related to changes in glacier mass balance through a multiple linear correlation of mean specific net balance with mean summer temperature and mean specific winter balance. The T model was run with mass-balance perturbations in the form of linear increases from the recent (1980–89) mean summer temperature of 1, 2 and 4°C over the next 100 years. Perturbations for the TP model also used linear increases in precipitation of 10, 20 and 50% over current mean winter values in addition to increases in temperature. Results of the modeling suggest that initial changes in the glacier‘s profile due to increases in temperature, or in both temperature and precipitation, are of comparable magnitude to those that might be expected as the glacier completes its response under the existing climate. Changes in the glacier‘s surface profile and terminus position that can, with some certainty, be attributed to climatic warming may only become apparent several decades after warming has begun.


2000 ◽  
Vol 46 (152) ◽  
pp. 1-6 ◽  
Author(s):  
J. Oerlemans ◽  
B. K. Reichert

AbstractWe propose to quantify the climate sensitivity of the mean specific balance B of a glacier by a seasonal sensitivity characteristic (SSC). The SSC gives the dependence of B on monthly anomalies in temperature and precipitation. It is calculated from a mass-balance model. We show and discuss examples for Franz-Josef Glacier (New Zealand), Nigardsbreen (Norway), Hintereisferner (Austria), Peyto Glacier (Canadian Rockies), Abramov Glacier (Kirghizstan) and White Glacier (Canadian Arctic). With regard to the climate sensitivity of B, the SSCs clearly show that summer temperature is the most important factor for glaciers in a dry climate. For glaciers in a wetter climate, spring and fall temperatures also make a significant contribution to the overall sensitivity. The SSC is a 2 × 12 matrix. Multiplying it with monthly perturbations of temperature and precipitation for a particular year yields an estimate of the balance for that year. We show that, with this technique, mass-balance series can be (re)constructed from long meteorological records or from output of atmospheric models.


2021 ◽  
pp. 1-55
Author(s):  
Meilin Zhu ◽  
Lonnie G. Thompson ◽  
Huabiao Zhao ◽  
Tandong Yao ◽  
Wei Yang ◽  
...  

AbstractGlacier changes on the Tibetan Plateau (TP) have been spatially heterogeneous in recent decades. The understanding of glacier mass changes in western Tibet, a transitional area between the monsoon-dominated region and the westerlies-dominated region, is still incomplete. For this study, we used an energy-mass balance model to reconstruct annual mass balances from October 1967 to September 2019 to explore the effects of local climate and large-scale atmospheric circulation on glacier mass changes in western Tibet. The results showed Xiao Anglong Glacier is close to a balanced condition, with an average value of -53±185 mm w.e. a-1 for 1968-2019. The interannual mass balance variability during 1968-2019 was primary driven by ablation-season precipitation, which determined changes in the snow accumulation and strongly influenced melt processes. The interannual mass balance variability during 1968-2019 was less affected by ablation-season air temperature, which only weakly affected snowfall and melt energy. Further analysis suggests that the southward (or northward) shift of the westerlies caused low (or high) ablation-season precipitation, and therefore low (or high) annual mass balance for glaciers in western Tibet. In addition, the average mass balance for Xiao Anglong Glacier was 83±185, -210±185, and -10±185 mm w.e. a-1 for 1968-1990, 1991-2012, and 2013-2019, respectively. These mass changes were associated with the variations in precipitation and air temperature during the ablation season on interdecadal time scales.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2005 ◽  
Vol 42 ◽  
pp. 395-401 ◽  
Author(s):  
Thomas V. Schuler ◽  
Regine Hock ◽  
Miriam Jackson ◽  
Hallgeir Elvehøy ◽  
Matthias Braun ◽  
...  

AbstractAssessing the impact of possible climate change on the water resources of glacierized areas requires a reliable model of the climate–glacier-mass-balance relationship. In this study, we simulate the mass-balance evolution of Engabreen, Norway, using a simple mass-balance model based on daily temperature and precipitation data from a nearby climate station. Ablation is calculated using a distributed temperature-index method including potential direct solar radiation, while accumulation is distributed linearly with elevation. The model was run for the period 1974/75–2001/02, for which annual mass-balance measurements and meteorological data are available. Parameter values were determined by a multi-criteria validation including point measurements of mass balance, mass-balance gradients and specific mass balance. The modelled results fit the observed mass balance well. Simple sensitivity experiments indicate a high sensitivity of the mass balance to temperature changes, as expected for maritime glaciers. The results suggest, further, that the mass balance of Engabreen is more sensitive to warming during summer than during winter, while precipitation changes affect almost exclusively the winter balance.


2006 ◽  
Vol 43 ◽  
pp. 323-328 ◽  
Author(s):  
Tianding Han ◽  
Yongjian Ding ◽  
Baisheng Ye ◽  
Shiyin Liu ◽  
Keqin Jiao

AbstractThe temporal and spatial variations of mass balance on different timescales were analyzed to identify their response to climate change using long-term observed mass-balance data covering the period 1959–2002 at Ürümqi glacier No. 1 at the headwaters of the Ürümqi river, Tien Shan, China. The results show that the accumulated glacier mass balance has decreased by 9599 mm w.e., which is equivalent to about 10 m mean thickness reduction. The negative mass balance has been accentuated in recent years, with a mean mass balance during the period 1997–2002 of –739.6 mm a−1. The glacier mass balance shows a clear periodicity, with positive and negative alternations of 7 and 15 years during the past several decades. Annual mass balance shows a significant negative correlation with summer air temperature from June to August. It is influenced more by annual air temperature than by annual precipitation. The temperature increase preceded the precipitation increase as an influence on the mass balance. Furthermore, monthly mass balance shows a negative correlation with monthly air temperature, significant at the 99% confidence level in July and August. Monthly mass balance is negatively correlated with precipitation in May and August at the 95% confidence level, but positively and insignificantly correlated with precipitation in June and July. The negative relationship between mass balance and precipitation might be related to concurrent increases of precipitation and temperature.


Sign in / Sign up

Export Citation Format

Share Document