scholarly journals What Controls the Strength of Snow-Albedo Feedback?

2007 ◽  
Vol 20 (15) ◽  
pp. 3971-3981 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract The strength of snow-albedo feedback (SAF) in transient climate change simulations of the Fourth Assessment of the Intergovernmental Panel on Climate Change is generally determined by the surface-albedo decrease associated with a loss of snow cover rather than the reduction in snow albedo due to snow metamorphosis in a warming climate. The large intermodel spread in SAF strength is likewise attributable mostly to the snow cover component. The spread in the strength of this component is in turn mostly attributable to a correspondingly large spread in mean effective snow albedo. Models with large effective snow albedos have a large surface-albedo contrast between snow-covered and snow-free regions and exhibit a correspondingly large surface-albedo decrease when snow cover decreases. Models without explicit treatment of the vegetation canopy in their surface-albedo calculations typically have high effective snow albedos and strong SAF, often stronger than observed. In models with explicit canopy treatment, completely snow-covered surfaces typically have lower albedos and the simulations have weaker SAF, generally weaker than observed. The authors speculate that in these models either snow albedos or canopy albedos when snow is present are too low, or vegetation shields snow-covered surfaces excessively. Detailed observations of surface albedo in a representative sampling of snow-covered surfaces would therefore be extremely useful in constraining these parameterizations and reducing SAF spread in the next generation of models.

2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


2020 ◽  
Author(s):  
Johanna Malle ◽  
Nick Rutter ◽  
Clare Webster ◽  
Giulia Mazzotti ◽  
Leanne Wake ◽  
...  

<p>Seasonal snow massively impacts the surface energy budget through its high reflectivity and is therefore an important component of land-atmosphere models. It affects climate through Snow Albedo Feedback (SAF), a positive feedback mechanism between a reduced snow cover extent due to climate warming and the corresponding increase of shortwave absorption, which provokes a further reduction in snow cover extent. SAF has been shown to be the largest climate feedback over the extratropical Northern Hemisphere (NH) during the snow melt period. Yet, large biases in SAF projections are linked to snow-vegetation interactions.</p><p>This study aims at investigating uncertainties associated with the representation of wintertime Land Surface Albedo (LSA) of forested environments in global climate models, which is an essential aspect when studying SAF. UAV-based observations of LSA were used to assess corresponding LSA simulations in CLM5, the land component of the NCAR Community Earth System Model. Our measurements capture a wide range of forest structure and species found in seasonally snow covered environments, spanning from Swiss sub-alpine to Finnish boreal forests, and show a strong dependency of LSA on solar angle and canopy density. CLM5 simulations failed to capture a realistic range in LSA and shortcomings were identified particularly with regards to simulations at sparsely forested sites. In these environments, Leaf Area Index as the main descriptor of canopy structure was unable to explain observed LSA differences in space and time. This study emphasizes the need to improve the representation of canopy structure in land surface models with critical implications for simulations of Snow Albedo Feedback strength over the NH extratropics.</p>


2006 ◽  
Vol 19 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Michael Winton

Abstract A technique for estimating surface albedo feedback (SAF) from standard monthly mean climate model diagnostics is applied to the 1% yr−1 carbon dioxide (CO2)-increase transient climate change integrations of 12 Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) climate models. Over the 80-yr runs, the models produce a mean SAF at the surface of 0.3 W m−2 K−1 with a standard deviation of 0.09 W m−2 K−1. Relative to 2 × CO2 equilibrium run estimates from an earlier group of models, both the mean SAF and the standard deviation are reduced. Three-quarters of the model mean SAF comes from the Northern Hemisphere in roughly equal parts from the land and ocean areas. The remainder is due to Southern Hemisphere ocean areas. The SAF differences between the models are shown to stem mainly from the sensitivity of the surface albedo to surface temperature rather from the impact of a given surface albedo change on the shortwave budget.


2017 ◽  
Vol 30 (4) ◽  
pp. 1417-1438 ◽  
Author(s):  
Daniel B. Walton ◽  
Alex Hall ◽  
Neil Berg ◽  
Marla Schwartz ◽  
Fengpeng Sun

Abstract California’s Sierra Nevada is a high-elevation mountain range with significant seasonal snow cover. Under anthropogenic climate change, amplification of the warming is expected to occur at elevations near snow margins due to snow albedo feedback. However, climate change projections for the Sierra Nevada made by global climate models (GCMs) and statistical downscaling methods miss this key process. Dynamical downscaling simulates the additional warming due to snow albedo feedback. Ideally, dynamical downscaling would be applied to a large ensemble of 30 or more GCMs to project ensemble-mean outcomes and intermodel spread, but this is far too computationally expensive. To approximate the results that would occur if the entire GCM ensemble were dynamically downscaled, a hybrid dynamical–statistical downscaling approach is used. First, dynamical downscaling is used to reconstruct the historical climate of the 1981–2000 period and then to project the future climate of the 2081–2100 period based on climate changes from five GCMs. Next, a statistical model is built to emulate the dynamically downscaled warming and snow cover changes for any GCM. This statistical model is used to produce warming and snow cover loss projections for all available CMIP5 GCMs. These projections incorporate snow albedo feedback, so they capture the local warming enhancement (up to 3°C) from snow cover loss that other statistical methods miss. Capturing these details may be important for accurately projecting impacts on surface hydrology, water resources, and ecosystems.


2020 ◽  
Vol 12 (7) ◽  
pp. 1188
Author(s):  
Xingwen Lin ◽  
Jianguang Wen ◽  
Qinhuo Liu ◽  
Dongqin You ◽  
Shengbiao Wu ◽  
...  

As an essential climate variable (ECV), land surface albedo plays an important role in the Earth surface radiation budget and regional or global climate change. The Tibetan Plateau (TP) is a sensitive environment to climate change, and understanding its albedo seasonal and inter-annual variations is thus important to help capture the climate change rules. In this paper, we analyzed the large-scale spatial patterns, temporal trends, and seasonal variability of land surface albedo overall the TP, based on the moderate resolution imaging spectroradiometer (MODIS) MCD43 albedo products from 2001 to 2019. Specifically, we assessed the correlations between the albedo anomaly and the anomalies of normalized difference vegetation index (NDVI), the fraction of snow cover (snow cover), and land surface temperature (LST). The results show that there are larger albedo variations distributed in the mountainous terrain of the TP. Approximately 10.06% of the land surface is identified to have been influenced by the significant albedo variation from the year 2001 to 2019. The yearly averaged albedo was decreased significantly at a rate of 0.0007 (Sen’s slope) over the TP. Additionally, the yearly average snow cover was decreased at a rate of 0.0756. However, the yearly average NDVI and LST were increased with slopes of 0.0004 and 0.0253 over the TP, respectively. The relative radiative forcing (RRF) caused by the land cover change (LCC) is larger than that caused by gradual albedo variation in steady land cover types. Overall, the RRF due to gradual albedo variation varied from 0.0005 to 0.0170 W/m2, and the RRF due to LCC variation varied from 0.0037 to 0.0243 W/m2 during the years 2001 to 2019. The positive RRF caused by gradual albedo variation or the LCC can strengthen the warming effects in the TP. The impact of the gradual albedo variations occurring in the steady land cover types was very low between 2001 and 2019 because the time series was short, and it therefore cannot be neglected when examining radiative forcing for a long time series regarding climate change.


2020 ◽  
Author(s):  
jiangling hu ◽  
duoying ji

<p>As the land surface warms, a subsequent reduction in snow and ice cover reveals a less reflective surface that absorbs more solar radiation, which further enhances the initial warming. This positive feedback climate mechanism is the snow albedo feedback (SAF), which will exacerbate climate warming and is the second largest contributor to Arctic amplification. Snow albedo feedback will increase the sensitivity of climate change in the northern hemisphere, which affects the accuracy of climate models in simulation research of climate change, and further affects the credibility of future climate prediction results.</p><p>Using the latest generation of climate models from CMIP6 (Coupled Model Intercomparison Project Version 6), we analyze seasonal cycle snow albedo feedback in Northern Hemisphere extratropics. We find that the strongest SAF strength is in spring (mean: -1.34 %K<sup>-1</sup>), second strongest is autumn (mean: -1.01 %K<sup>-1</sup>), the weakest is in summer (mean: -0.18 %K<sup>-1</sup>). Except summer, the SAF strength is approximately 0.15% K<sup>-1</sup> larger than CMIP5 models in the other three seasons. The spread of spring SAF strength (range: -1.09 to -1.37% K<sup>-1</sup>) is larger than CMIP5 models. Oppositely, the spread of summer SAF strength (range: 0.20 to -0.56% K<sup>-1</sup>) is smaller than CMIP5 models. When compared with CMIP5 models, the spread of autumn and winter SAF strength have not changed much.</p>


2006 ◽  
Vol 19 (21) ◽  
pp. 5686-5699 ◽  
Author(s):  
Isaac M. Held ◽  
Brian J. Soden

Abstract Using the climate change experiments generated for the Fourth Assessment of the Intergovernmental Panel on Climate Change, this study examines some aspects of the changes in the hydrological cycle that are robust across the models. These responses include the decrease in convective mass fluxes, the increase in horizontal moisture transport, the associated enhancement of the pattern of evaporation minus precipitation and its temporal variance, and the decrease in the horizontal sensible heat transport in the extratropics. A surprising finding is that a robust decrease in extratropical sensible heat transport is found only in the equilibrium climate response, as estimated in slab ocean responses to the doubling of CO2, and not in transient climate change scenarios. All of these robust responses are consequences of the increase in lower-tropospheric water vapor.


Author(s):  
Linfei Yu ◽  
Guoyong Leng ◽  
Andre Python

Abstract The Arctic warming rate is triple the global average, which is partially caused by surface albedo feedback (SAF). Understanding the varying pattern of SAF and the mechanisms is therefore critical for predicting future Arctic climate under anthropogenic warming. To date, however, how the spatial pattern of seasonal SAF is influenced by various land surface factors remains unclear. Here, we aim to quantify the strengths of seasonal SAF across the Arctic and to attribute its spatial heterogeneity to the dynamics of vegetation, snow and soil as well as their interactions. The results show a large positive SAF above -5%·K-1 across Baffin Island in January and eastern Yakutia in June, while a large negative SAF beyond 5%·K-1 is observed in Canada, Chukotka and low latitudes of Greenland in January and Nunavut, Baffin Island and Krasnoyarsk Krai in July. Overall, a great spatial heterogeneity of Arctic land warming induced by positive SAF is found with a coefficient of variation (CV) larger than 61.5%, and the largest spatial difference is detected in wintertime with a CV > 643.9%. Based on the optimal parameter-based geographic detector model, the impacts of snow cover fraction (SCF), land cover type (LC), normalized difference vegetation index (NDVI), soil water content (SW), soil substrate chemistry (SC) and soil type (ST) on the spatial pattern of positive SAF are quantified. The rank of determinant power is SCF > LC > NDVI > SW > SC > ST, which indicates that the spatial patterns of snow cover, land cover and vegetation coverage dominate the spatial heterogeneity of positive SAF in the Arctic. The interactions between SCF, LC and SW exert further influences on the spatial pattern of positive SAF in March, June and July. This work could provide a deeper understanding of how various land factors contribute to the spatial heterogeneity of Arctic land warming at the annual cycle.


Sign in / Sign up

Export Citation Format

Share Document