scholarly journals The Importance of Spring and Autumn Atmospheric Conditions for the Evaporation Regime of Lake Superior

2013 ◽  
Vol 14 (5) ◽  
pp. 1647-1658 ◽  
Author(s):  
C. Spence ◽  
P. D. Blanken ◽  
J. D. Lenters ◽  
N. Hedstrom

Abstract Feedbacks between ice extent and evaporation have long been suspected to be important for Lake Superior evaporation because it is during autumn and winter when latent heat fluxes are highest. Recent direct measurements of evaporation made at the Stannard Rock Lighthouse have provided new information on the physical controls on Lake Superior evaporation, in particular that evaporation can react within hours to days to a change in synoptic conditions. However, the large heat capacity of the lake creates a strong seasonal cycle of energy storage and release. There is a complex interaction among heat storage, evaporation, and ice cover that is highly dependent on atmospheric conditions in the spring and autumn “shoulder seasons.” Small changes in conditions in November and March caused by synoptic-scale events can have profound impacts on annual evaporation, the extent of ice cover, and the length of the ice-covered period. Early winter air temperatures in November and December dictate the nature of ice formation and much of the winter evaporative flux. Decreased ice cover, by itself, does not necessarily lead to enhanced annual evaporation losses. Rather, a combination of low ice cover and warm spring air temperatures, leading to an early breakup, can significantly lengthen the next evaporation season and cause greater cumulative water loss the subsequent year. The influence of individual synoptic events on annual evaporation is notable enough that the research community should ensure that their role is properly captured in numerical models to provide sound predictions of future Laurentian Great Lakes evaporation regimes.

2001 ◽  
Vol 33 ◽  
pp. 45-50 ◽  
Author(s):  
V.I. Lytle ◽  
S.F. Ackley

AbstractDuring a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on the ice surface. This flooded snow subsequently froze, and, 5 days after the lead opened, all the congelation ice had melted and 26 cm of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-wlter input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show that an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.


2021 ◽  
Author(s):  
Holt Hancock ◽  
Jordy Hendrikx ◽  
Markus Eckerstorfer ◽  
Siiri Wickström

Abstract. Atmospheric circulation exerts an important control on a region's snow avalanche activity by broadly determining the mountain weather patterns which influence snowpack development and avalanche release. In central Spitsbergen, the largest island in the high-Arctic Svalbard archipelago, avalanches are a common natural hazard throughout the winter months. Previous work has identified a unique snow climate reflecting the region's climatically dynamic environmental setting but has not specifically addressed the synoptic-scale control of atmospheric circulation on avalanche activity here. In this work, we investigate atmospheric circulation's control on snow avalanching in the Nordenskiöld Land region of central Spitsbergen by first constructing a four-season (2016/2017–2019/2020) regional avalanche activity record using observations available on a database used by the Norwegian Water Resources and Energy Directorate (NVE). We then analyze the synoptic atmospheric conditions on days with differing avalanche activity situations. Our results show synoptic conditions conducive to elevated precipitation, wind speeds, and air temperatures near Svalbard are associated with increased avalanche activity in Nordenskiöld Land, but different synoptic signals exist for days characterized by dry, mixed, and wet avalanche activity. Differing upwind conditions help further explain differences in the frequency and nature of avalanche activity resulting from these various atmospheric circulation patterns. We further employ a daily atmospheric circulation calendar to help contextualize our results in the growing body of literature related to environmental change in this location. This work helps expand our understanding of snow avalanches in Svalbard to a broader spatial scale and provides a basis for future work investigating the impacts of environmental change on avalanche activity in Svalbard and other locations where avalanche regimes are impacted by changing climatic and synoptic conditions.


2021 ◽  
Vol 15 (8) ◽  
pp. 3813-3837
Author(s):  
Holt Hancock ◽  
Jordy Hendrikx ◽  
Markus Eckerstorfer ◽  
Siiri Wickström

Abstract. Atmospheric circulation exerts an important control on a region's snow avalanche activity by broadly determining the mountain weather patterns that influence snowpack development and avalanche release. In central Spitsbergen, the largest island in the High Arctic Svalbard archipelago, avalanches are a common natural hazard throughout the winter months. Previous work has identified a unique snow climate reflecting the region's climatically dynamic environmental setting but has not specifically addressed the synoptic-scale control of atmospheric circulation on avalanche activity here. In this work, we investigate atmospheric circulation's control on snow avalanching in the Nordenskiöld Land region of central Spitsbergen by first constructing a four-season (2016/2017–2019/2020) regional avalanche activity record using observations available on a database used by the Norwegian Water Resources and Energy Directorate (NVE). We then analyze the synoptic atmospheric conditions on days with differing avalanche activity situations. Our results show atmospheric circulation conducive to elevated precipitation, wind speeds, and air temperatures near Svalbard are associated with increased avalanche activity in Nordenskiöld Land, but different synoptic signals exist for days characterized by dry, mixed, and wet avalanche activity. Differing upwind conditions help further explain differences in the frequency and nature of avalanche activity resulting from these various atmospheric circulation patterns. We further employ a daily atmospheric circulation calendar to help contextualize our results in the growing body of literature related to climate change in this location. This work helps expand our understanding of snow avalanches in Svalbard to a broader spatial scale and provides a basis for future work investigating the impacts of climate change on avalanche activity in Svalbard and other locations where avalanche regimes are impacted by changing climatic and synoptic conditions.


2019 ◽  
Vol 66 (255) ◽  
pp. 11-24
Author(s):  
Sebastián Echeverría ◽  
Mark B. Hausner ◽  
Nicolás Bambach ◽  
Sebastián Vicuña ◽  
Francisco Suárez

AbstractAntarctic lakes with perennial ice covers provide the opportunity to investigate in-lake processes without direct atmospheric interaction, and to study their ice-cover sensitivity to climate conditions. In this study, a numerical model – driven by radiative, atmospheric and turbulent heat fluxes from the water body beneath the ice cover – was implemented to investigate the impact of climate change on the ice covers from two Antarctic lakes: west lobe of Lake Bonney (WLB) and Crooked Lake. Model results agreed well with measured ice thicknesses of both lakes (WLB – RMSE= 0.11 m over 16 years of data; Crooked Lake – RMSE= 0.07 m over 1 year of data), and had acceptable results with measured ablation data at WLB (RMSE= 0.28 m over 6 years). The differences between measured and modeled ablation occurred because the model does not consider interannual variability of the ice optical properties and seasonal changes of the lake's thermal structure. Results indicate that projected summer air temperatures will increase the ice-cover annual melting in WLB by 2050, but that the ice cover will remain perennial through the end of this century. Contrarily, at Crooked Lake the ice cover becomes ephemeral most likely due to the increase in air temperatures.


2004 ◽  
Vol 43 (12) ◽  
pp. 1887-1899 ◽  
Author(s):  
Daniel J. Leathers ◽  
Daniel Graybeal ◽  
Thomas Mote ◽  
Andrew Grundstein ◽  
David Robinson

Abstract A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing stations are used to identify large ablation events within a 1° latitude × 1° longitude grid box that covers the majority of the Lycoming Creek basin in northern Pennsylvania. All 1-day ablation events greater than or equal to 7.6 cm (3 in.) are identified for the period of 1950 through 2001. Seventy-one events are identified, and these days are matched with a daily airmass type derived using the Spatial Synoptic Classification technique. Average meteorological characteristics on ablation days of each airmass type are calculated in an effort to understand the diverse meteorological influences that led to the large ablation events. A one-dimensional mass and energy balance snowpack model (“SNTHERM”) is used to calculate surface/atmosphere energy fluxes responsible for ablation under each airmass type. Results indicate that large ablation events take place under diverse airmass/synoptic conditions in the central Appalachians. Five airmass types account for the 71 large ablation events over the 52-yr period. Forty-three of the events occurred under “moist” airmass types and 28 under “dry” airmass conditions. Large ablation events under dry airmass types are driven primarily by daytime net radiation receipt, especially net solar radiation. These events tend to occur early and late in the snow cover season when solar radiation receipt is highest and are characterized by relatively clear skies, warm daytime temperatures, and low dewpoint temperatures. Moist airmass types are characterized by cloudy, windy conditions with higher dewpoint temperatures and often with liquid precipitation. During these events sensible heat flux is most often the dominant energy flux to the snowpack during ablation episodes. However, in many cases there is also a significant input of energy to the snowpack associated with condensation. Combinations of high sensible and latent heat fluxes often result in extreme ablation episodes, similar to those witnessed in this area in January 1996.


2017 ◽  
Vol 30 (17) ◽  
pp. 6999-7016 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.


2013 ◽  
Vol 9 (3) ◽  
pp. 1253-1269 ◽  
Author(s):  
M. Nolan

Abstract. Analysis of the 3.6 Ma, 318 m long sediment core from Lake El'gygytgyn suggests that the lake was covered by ice for millennia at a time for much of its history and therefore this paper uses a suite of existing, simple, empirical degree-day models of lake-ice growth and decay to place quantitative constraints on air temperatures needed to maintain a permanent ice cover on the lake. We also provide an overview of the modern climatological and physical processes that relate to lake-ice growth and decay as a basis for evaluating past climate and environmental conditions. Our modeling results indicate that modern annual mean air temperature would only have to be reduced by 3.3 °C ± 0.9 °C to initiate a multiyear ice cover and a temperature reduction of at least 5.5 °C ± 1.0 °C is likely needed to completely eliminate direct air–water exchange of oxygen, conditions that have been inferred at Lake El'gygytgyn from the analysis of sediment cores. Once formed, a temperature reduction of only 1–3 °C relative to modern may be all that is required to maintain multiyear ice. We also found that formation of multiyear ice covers requires that positive degree days are reduced by about half the modern mean, from about +608 to +322. A multiyear ice cover can persist even with summer temperatures sufficient for a two-month long thawing period, including a month above +4 °C. Thus, it is likely that many summer biological processes and some lake-water warming and mixing may still occur beneath multiyear ice-covers even if air–water exchange of oxygen is severely restricted.


2022 ◽  
Vol 12 (3) ◽  
pp. 29-43
Author(s):  
Samarendra Karmakar ◽  
Mohan Kumar Das ◽  
Md Quamrul Hassam ◽  
Md Abdul Mannan

The diagnostic and prognostic studies of thunderstorms/squalls are very important to save live and loss of properties. The present study aims at diagnose the different tropospheric parameters, instability and synoptic conditions associated the severe thunderstorms with squalls, which occurred at different places in Bangladesh on 31 March 2019. For prognostic purposes, the severe thunderstorms occurred on 31 March 2019 have been numerically simulated. In this regard, the Weather Research and Forecasting (WRF) model is used to predict different atmospheric conditions associated with the severe storms. The study domain is selected for 9 km horizontal resolution, which almost covers the south Asian region. Numerical experiments have been conducted with the combination of WRF single-moment 6 class (WSM6) microphysics scheme with Yonsei University (YSU) PBL scheme in simulation of the squall events. Model simulated results are compared with the available observations. The observed values of CAPE at Kolkata both at 0000 and 1200 UTC were 2680.4 and 3039.9 J kg-1 respectively on 31 March 2019 and are found to be comparable with the simulated values. The area averaged actual rainfall for 24 hrs is found is 22.4 mm, which complies with the simulated rainfall of 20-25 mm for 24 hrs. Journal of Engineering Science 12(3), 2021, 29-43


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1619
Author(s):  
Yingsai Ma ◽  
Xianhong Meng ◽  
Yinhuan Ao ◽  
Ye Yu ◽  
Guangwei Li ◽  
...  

The Loess Plateau is one land-atmosphere coupling hotspot. Soil moisture has an influence on atmospheric boundary layer development under specific early-morning atmospheric thermodynamic structures. This paper investigates the sensitivity of atmospheric convection to soil moisture conditions over the Loess Plateau in China by using the convective triggering potential (CTP)—humidity index (HIlow) framework. The CTP indicates atmospheric stability and the HIlow indicates atmospheric humidity in the low-level atmosphere. By comparing the model outcomes with the observations, the one-dimensional model achieves realistic daily behavior of the radiation and surface heat fluxes and the mixed layer properties with appropriate modifications. New CTP-HIlow thresholds for soil moisture-atmosphere feedbacks are found in the Loess Plateau area. By applying the new thresholds with long-time scales sounding data, we conclude that negative feedback is dominant in the north and west portion of the Loess Plateau; positive feedback is predominant in the south and east portion. In general, this framework has predictive significance for the impact of soil moisture on precipitation. By using this new CTP-HIlow framework, we can determine under what atmospheric conditions soil moisture can affect the triggering of precipitation and under what atmospheric conditions soil moisture has no influence on the triggering of precipitation.


2021 ◽  
Author(s):  
Don Perovich ◽  
Ian Raphael ◽  
Ryleigh Moore ◽  
David Clemens-Sewall

<p>Four seasonal ice mass balance buoys were deployed as part of the MOSAiC distributed network. These instruments measured vertical profiles of snow and ice temperature, as well as snow depth and ice thickness every six hours. Ice growth, surface melt, and bottom melt, as well as temporally averaged estimates of ocean heat fluxes, were calculated from these measurements. The buoys were installed in October 2019, with durations ranging from February 2020 to July 2020. Three of the buoys were destroyed in ridging events in February, March, and June 2020. The fourth buoy lasted until floe breakup in July 2020. The sites were separated by tens of kilometers, but had very similar air temperatures. While air temperatures were similar, snow – ice interface temperatures at different buoys varied by as much as 15 C due to differences in snow depth and ice thickness. Initial ice thicknesses ranged from 0.30 to 1.36 meters. During the growth season snow depths typically were around 0.1 to 0.2 meters, except for one case where the buoy was in a snow drift and the snow depth exceeded 0.5 meter. Peak growth rates of about 0.8 cm per day occurred in January. In mid-January there was a rapid increase in ice thickness associated with an aggregation of platelet ice. This aggregation only lasted for two weeks. In mid-April, air temperatures increased to nearly 0 C, almost ending the growth season.</p>


Sign in / Sign up

Export Citation Format

Share Document