scholarly journals Meteorological Forcing Datasets for Blowing Snow Modeling on the Tibetan Plateau: Evaluation and Intercomparison

2017 ◽  
Vol 18 (10) ◽  
pp. 2761-2780 ◽  
Author(s):  
Zhipeng Xie ◽  
Zeyong Hu ◽  
Lianglei Gu ◽  
Genhou Sun ◽  
Yizhen Du ◽  
...  

Abstract In this paper, the reliability of the wind speed, temperature, humidity, pressure, and precipitation values of three surface meteorological forcing products [China Meteorological Administration Land Data Assimilation System, version 2 (CLDAS-2); China Meteorological Forcing Dataset (CMFD); and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)] in the Tibetan Plateau (TP) region was investigated from 2008 to 2014. Compared with the China Meteorological Administration (CMA) observations, CLDAS-2 exhibited the highest correlation coefficient for wind speed, CMFD displayed the best coefficients for temperature and specific humidity, and MERRA-2 best reflected pressure variations. Based on the biases, CLDAS-2 exhibited the best overall performance for temperature, specific humidity, and pressure, while CMFD displayed the best performance for wind speed. The high overall accuracy and false alarm ratio of precipitation based on MERRA-2 both stem from its continuous overestimation of the precipitation frequency. Both CLDAS-2 and CMFD overestimated the nonprecipitation frequency in comparisons with CMA observations, and a significant positive bias exists in MERRA-2 based on the analysis of daily precipitation. The results obtained from the comparisons with field observations over the TP and CMA observations are similar, except for the temperature and humidity biases of CLDAS-2. The meteorological effects on the coupled land–blowing snow modeling discussed in this paper suggest that the occurrence of blowing snow and snowdrift sublimation are projected to be reduced by CLDAS-2 due to the underestimation of wind speed, continual lack of snowfall events, and the positive biases in low temperatures and humidity, while simulations of blowing processes by MERRA-2 are likely to be much more severe than they actually are. These results may contribute to identifying deficiencies associated with the development of land surface models coupled with a blowing snow model.

2017 ◽  
Vol 30 (18) ◽  
pp. 7379-7398 ◽  
Author(s):  
Chunlüe Zhou ◽  
Kaicun Wang ◽  
Qian Ma

Abstract Land surface temperature Ts provides essential supplementary information to surface air temperature, the most widely used metric in global warming studies. A lack of reliable observational Ts data makes assessing model simulations difficult. Here, the authors first examined the simulated Ts of eight current reanalyses based on homogenized Ts data collected at ~2200 weather stations from 1979 to 2003 in China. The results show that the reanalyses are skillful in simulating the interannual variance of Ts in China (r = 0.95) except over the Tibetan Plateau. ERA-Interim and MERRA land versions perform better in this respect than ERA-Interim and MERRA. Observations show that the interannual variance of Ts over the north China plain and south China is mostly influenced by surface incident solar radiation Rs, followed by precipitation frequency, whereas the opposite is true over the northwest China, northeast China, and the Tibetan Plateau. This variable relationship is well captured by ERA-Interim, ERA-Interim land, MERRA, and JRA-55. The homogenized Ts data show a warming of 0.34°C decade−1 from 1979 to 2003 in China, varying between 0.25° and 0.42°C decade−1 for the eight reanalyses. However, the reanalyses substantially underestimate the warming trend of Ts over northwest China, northeast China, and the Tibetan Plateau and significantly overestimate the warming trend of Ts over the north China plain and south China owing to their biases in simulating the Rs and precipitation frequency trends. This study provides a diagnostic method for examining the capability of current atmospheric/land reanalysis data in regional climate change studies.


2020 ◽  
Author(s):  
Hui Lu ◽  
Junhua Zhou ◽  
Kun Yang

<p>Many model results showed obvious wet biases during winter while the simulation was good during summer over the Tibetan Plateau (TP). Low gauge density and the limited capacity of snowfall may introduce dry biases into the observation and then exaggerate the overestimation of winter precipitation. To evaluate the winter precipitation products over the TP, we compared six precipitation products, including TRMM, ERA5, ERA-Interim, GLDAS, HAR, and the observation provided by China Meteorological Administration (CMA), against a sublimation dataset derived from remotely sensed snow cover data. The Kuzmin formula constrained with IMS snow cover product and land surface temperature was used to estimate sublimation. To ensure the reliability of the sublimation value, the accuracy of the simulated sublimation value was verified by the sublimation value observed at the pass area of Dadongshu Station and the consistency of two snow cover products was verified by using MODIS daily cloud-free snow cover products over the Tibetan Plateau.</p><p>The comparison revealed that the average underestimated area ratio of CMA on the TP and the Inner TP respectively were about 60% and 90%. CMA has an obvious underestimation (80% region showed underestimation and precipitation underestimation ratio mostly more than 100%) in the west of TP where lack of observation site. However, there was not obvious underestimation in East TP because of the dense stations available. It implies that the observation data has considerable dry biases (~200%) in winter precipitation over the Western TP where more ground stations are needed to get a reliable precipitation observation. For other precipitation products, HAR showed the smallest underestimation with a 12% region of precipitation underestimation. ERA5 and ERA-Interim are close behind HAR, but the underestimation area ratio of ERA5 was about 15% smaller than ERA-Interim in each statistical area of TP. TRMM and GLDAS show comparable underestimation and both are more apparent than ERA-interim. The underestimation phenomenon of TRMM shows little difference in the western and eastern TP and the underestimated area ratio of TRMM was 64.68% on the TP.</p>


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


2018 ◽  
Vol 10 (10) ◽  
pp. 1534 ◽  
Author(s):  
Linan Guo ◽  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Junsheng Li ◽  
...  

In the Tibetan Plateau (TP), the changes of lake ice phenology not only reflect regional climate change, but also impose substantial ecohydrological impacts on the local environment. Due to the limitation of ground observation, remote sensing has been used as an alternative tool to investigate recent changes of lake ice phenology. However, uncertainties exist in the remotely sensed lake ice phenology owing to both the data and methods used. In this paper, three different remotely sensed datasets are used to investigate the lake ice phenology variation in the past decade across the Tibetan Plateau, with the consideration of the underlying uncertainties. The remotely sensed data used include reflectance data, snow product, and land surface temperature (LST) data of moderate resolution imaging spectroradiometer (MODIS). The uncertainties of the three methods based on the corresponding data are assessed using the triple collocation approach. Comparatively, it is found that the method based on reflectance data outperforms the other two methods. The three methods are more consistent in determining the thawing dates rather than the freezing dates of lake ice. It is consistently shown by the three methods that the ice-covering duration in the northern part of the TP lasts longer than that in the south. Though there is no general trend of lake ice phenology across the TP for the period of 2000–2015, the warmer climate and stronger wind have led to the earlier break-up of lake ice.


2020 ◽  
Vol 55 (9-10) ◽  
pp. 2921-2937
Author(s):  
Yanhong Gao ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
Xia Li

Abstract The precipitation recycling (PR) ratio is an important indicator that quantifies the land-atmosphere interaction strength in the Earth system’s water cycle. To better understand how the heterogeneous land surface in the Tibetan Plateau (TP) contributes to precipitation, we used the water-vapor tracer (WVT) method coupled with the Weather Research and Forecasting (WRF) regional climate model. The goals were to quantify the PR ratio, in terms of annual mean, seasonal variability and diurnal cycle, and to address the relationships of the PR ratio with lake treatments and precipitation amount. Simulations showed that the PR ratio increases from 0.1 in winter to 0.4 in summer when averaged over the TP with the maxima centered at the headwaters of three major rivers (Yangtze, Yellow and Mekong). For the central TP, the highest PR ratio rose to over 0.8 in August, indicating that most of the precipitation was recycled via local evapotranspiration in summer. The larger daily mean and standard deviation of the PR ratio in summer suggested a stronger effect of land-atmosphere interactions on precipitation in summer than in winter. Despite the relatively small spatial extent of inland lakes, the treatment of lakes in WRF significantly impacted the calculation of the PR ratio over the TP, and correcting lake temperature substantially improved both precipitation and PR ratio simulations. There was no clear relationship between PR ratio and precipitation amount; however, a significant positive correlation between PR and convective precipitation was revealed. This study is beneficial for the understanding of land-atmosphere interaction over high mountain regions.


2020 ◽  
Vol 7 (3) ◽  
pp. 500-515 ◽  
Author(s):  
Yunfei Fu ◽  
Yaoming Ma ◽  
Lei Zhong ◽  
Yuanjian Yang ◽  
Xueliang Guo ◽  
...  

Abstract Correct understanding of the land-surface processes and cloud-precipitation processes in the Tibetan Plateau (TP) is an important prerequisite for the study and forecast of the downstream activities of weather systems and one of the key points for understanding the global atmospheric movement. In order to show the achievements that have been made, this paper reviews the progress on the observations for the atmospheric boundary layer, land-surface heat fluxes, cloud-precipitation distributions and vertical structures by using ground- and space-based multiplatform, multisensor instruments and the effect of the cloud system in the TP on the downstream weather. The results show that the form drag related to the topography, land–atmosphere momentum and scalar fluxes is an important part of the parameterization process. The sensible heat flux decreased especially in the central and northern TP caused by the decrease in wind speeds and the differences in the ground-air temperatures. Observations show that the cloud and precipitation over the TP have a strong diurnal variation. Studies also show the compressed-air column in the troposphere by the higher-altitude terrain of the TP makes particles inside clouds vary at a shorter distance in the vertical direction than those in the non-plateau area so that precipitation intensity over the TP is usually small with short duration, and the vertical structure of the convective precipitation over the TP is obviously different from that in other regions. In addition, the influence of the TP on severe weather downstream is preliminarily understood from the mechanism. It is necessary to use model simulations and observation techniques to reveal the difference between cloud precipitation in the TP and non-plateau areas in order to understand the cloud microphysical parameters over the TP and the processes of the land boundary layer affecting cloud, precipitation and weather in the downstream regions.


Sign in / Sign up

Export Citation Format

Share Document