Mesoscale energy balance and air-sea interaction in the Kuroshio Extension: low-frequency versus high-frequency variability

Author(s):  
Haiyuan Yang ◽  
Lixin Wu ◽  
Ping Chang ◽  
Bo Qiu ◽  
Zhao Jing ◽  
...  

AbstractUsing eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air-sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air-sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air-sea heat fluxes has little influence on geostrophic mesoscale eddies.

2012 ◽  
Vol 25 (5) ◽  
pp. 1619-1634 ◽  
Author(s):  
Lu Wang ◽  
Tim Li ◽  
Tianjun Zhou

The structure and evolution characteristics of intraseasonal (20–100 day) variations of sea surface temperature (SST) and associated atmospheric and oceanic circulations over the Kuroshio Extension (KE) region during boreal summer are investigated, using satellite-based daily SST, observed precipitation data, and reanalysis data. The intraseasonal SST warming in the KE region is associated with an anomalous anticyclone in the overlying atmosphere, reduced precipitation, and northward and downward currents in the upper ocean. The corresponding atmospheric and oceanic fields during the SST cooling phase exhibit a mirror image with an opposite sign. A mixed layer heat budget analysis shows that the intraseasonal SST warming is primarily attributed to anomalous shortwave radiation and latent heat fluxes at the surface. The anomalous sensible heat flux and oceanic advection also have contributions, but with a much smaller magnitude. The SST warming caused by the atmospheric forcing further exerts a significant feedback to the atmosphere through triggering the atmospheric convective instability and precipitation anomalies. The so-induced heating leads to quick setup of a baroclinic response, followed by a baroclinic-to-barotropic transition. As a result, the atmospheric circulation changes from an anomalous anticyclone to an anomalous cyclone. This two-way interaction scenario suggests that the origin of the atmospheric intraseasonal oscillation over the KE region may partly arise from the local atmosphere–ocean interaction.


2020 ◽  
Vol 77 (7) ◽  
pp. 2453-2470 ◽  
Author(s):  
Jaeyoung Hwang ◽  
Patrick Martineau ◽  
Seok-Woo Son ◽  
Takafumi Miyasaka ◽  
Hisashi Nakamura

AbstractThe mechanism of North Pacific (NP) blocking formation is investigated by conducting a reanalysis-based budget analysis of the quasigeostrophic geopotential tendency equation. It is confirmed that the amplification of NP blocking anomalies primarily results from vorticity fluxes with a minor contribution of heat fluxes. In winter, the cross-frequency vorticity fluxes, resulting from interactions between high-frequency eddies and the slowly varying background flow, dominate the blocking formation. The cross-frequency vorticity fluxes, however, become substantially weaker and comparable to the low-frequency vorticity fluxes in summer. This seasonality indicates that the mechanism of NP blocking formation varies with seasons due to the different background flow. It is further found that NP blocking formation is not sensitive to the region of formation (i.e., western vs eastern NP) nor to the type of wave breaking (i.e., cyclonic vs anticyclonic wave breaking).


2009 ◽  
Vol 16 (6) ◽  
pp. 665-675 ◽  
Author(s):  
S. Pierini ◽  
H. A. Dijkstra

Abstract. In this paper, we provide a review of recent results targeted at the understanding of the low-frequency variability of the Kuroshio Extension. We provide the background and main arguments of two views which have recently been proposed to explain this variability. In the first view, wind-induced Rossby waves and the effects of mesocale eddies are crucial. The second view is based on low-dimensional equivalent-barotropic large-scale nonlinear dynamics, with neither Rossby wave dynamics nor baroclinic instability being important. Results from models supporting each view are discussed and confronted with results from available observations.


2018 ◽  
Vol 146 (2) ◽  
pp. 417-433 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract The active roles of sensible heat supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone, which occurred in the middle of January 2013, were examined by using a regional cloud-resolving model. In this study, a control experiment and three sensitivity experiments without sensible and latent heat fluxes from the warm currents were conducted. When the cyclone intensified, sensible heat fluxes from these currents become prominent around the cold conveyor belt (CCB) in the control run. Comparisons among the four runs revealed that the sensible heat supply facilitates deepening of the cyclone’s central pressure, CCB development, and enhanced latent heating over the bent-back front. The sensible heat supply enhances convectively unstable conditions within the atmospheric boundary layer along the CCB. The increased convective instability is released by the forced ascent associated with frontogenesis around the bent-back front, eventually promoting updraft and resultant latent heating. Additionally, the sensible heating leads to an increase in the water vapor content of the saturated air related to the CCB through an increase in the saturation mixing ratio. This increased water vapor content reinforces the moisture flux convergence at the bent-back front, contributing to the activation of latent heating. Previous research has proposed a positive feedback process between the CCB and latent heating over the bent-back front in terms of moisture supply from warm currents. Considering the above two effects of the sensible heat supply, this study revises the positive feedback process.


2006 ◽  
Vol 36 (3) ◽  
pp. 457-473 ◽  
Author(s):  
Bo Qiu ◽  
Peter Hacker ◽  
Shuiming Chen ◽  
Kathleen A. Donohue ◽  
D. Randolph Watts ◽  
...  

Abstract Properties and seasonal evolution of North Pacific Ocean subtropical mode water (STMW) within and south of the Kuroshio Extension recirculation gyre are analyzed from profiling float data and additional hydrographic and shipboard ADCP measurements taken during 2004. The presence of an enhanced recirculation gyre and relatively low mesoscale eddy variability rendered this year favorable for the formation of STMW. Within the recirculation gyre, STMW formed from late-winter convection that reached depths greater than 450 m near the center of the gyre. The lower boundary of STMW, corresponding to σθ ≃ 25.5 kg m−3, was set by the maximum depth of the late-winter mixed layer. Properties within the deep portions of the STMW layer remained largely unchanged as the season progressed. In contrast, the upper boundary of the STMW layer eroded steadily as the seasonal thermocline deepened from late April to August. Vertical eddy diffusivity responsible for this erosion was estimated from a budget analysis of potential vorticity to be in the range of ∼2–5 × 10−4 m2 s−1. The latitudinal extent of the STMW formation was narrow, extending from 30°N to the Kuroshio Extension jet near 35°N. South of 30°N, STMW did not form locally but was transported from the recirculation gyre by lateral induction.


1999 ◽  
Vol 276 (1) ◽  
pp. R178-R183 ◽  
Author(s):  
Philippe Van De Borne ◽  
Martin Hausberg ◽  
Robert P. Hoffman ◽  
Allyn L. Mark ◽  
Erling A. Anderson

The exact mechanisms for the decrease in R-R interval (RRI) during acute physiological hyperinsulinemia with euglycemia are unknown. Power spectral analysis of RRI and microneurographic recordings of muscle sympathetic nerve activity (MSNA) in 16 normal subjects provided markers of autonomic control during 90-min hyperinsulinemic/euglycemic clamps. By infusing propranolol and insulin ( n = 6 subjects), we also explored the contribution of heightened cardiac sympathetic activity to the insulin-induced decrease in RRI. Slight decreases in RRI ( P < 0.001) induced by sevenfold increases in plasma insulin could not be suppressed by propranolol. Insulin increased MSNA by more than twofold ( P < 0.001), decreased the high-frequency variability of RRI ( P< 0.01), but did not affect the absolute low-frequency variability of RRI. These results suggest that reductions in cardiac vagal tone and modulation contribute at least in part to the reduction in RRI during hyperinsulinemia. Moreover, more than twofold increases in MSNA occurring concurrently with a slight and not purely sympathetically mediated tachycardia suggest regionally nonuniform increases in sympathetic activity during hyperinsulinemia in humans.


2008 ◽  
Vol 21 (8) ◽  
pp. 1680-1697 ◽  
Author(s):  
Nicholas A. Bond ◽  
Meghan F. Cronin

Abstract The weather patterns during periods of anomalous surface fluxes in the Kuroshio recirculation gyre of the western North Pacific are documented. Separate analyses are carried out for the cold season (October– March) when the net surface heat flux is controlled by the combination of the turbulent sensible and latent heat fluxes (Qturb), and for the warm season (May–August) when the net heating is dominated by the net radiative fluxes (Qrad). For analysis of high-frequency (daily to weekly) variations in the fluxes, direct measurements from the Kuroshio Extension Observatory (KEO) for the period June 2004–November 2005 are used to specify flux events. For analysis of interannual variations, these events are selected using NCEP–NCAR reanalysis estimates for Qturb in the cold season, and International Comprehensive Ocean–Atmosphere Data Set (ICOADS) data for cloud fraction, as a proxy for Qrad, in the warm season. During the cold season, episodic high-frequency flux events are associated with significant anomalies in the east–west sea level pressure gradients, and hence meridional winds and lower-tropospheric air temperature, reflecting the dominance of the atmospheric forcing of the flux variability. On the other hand, interannual variations in Qturb are associated with relatively weak atmospheric circulation anomalies, implying a relatively important role for the ocean. During the warm season, high-frequency fluctuations in the net surface fluxes occur due to a mix of anomalies in Qturb and Qrad. Enhanced cloudiness in the vicinity of KEO, and hence reduced Qrad, tends to occur in association with weak cyclonic disturbances of extratropical origin. A regional atmospheric circulation favoring these types of events also was found for warm seasons that were cloudier on the whole. Results suggest that the ocean’s influence on air–sea fluxes at KEO is manifested mostly on interannual time scales during the cold season.


2018 ◽  
Vol 48 (8) ◽  
pp. 1675-1689 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang

AbstractUsing a recently developed tool, multiscale window transform (MWT), and the MWT-based canonical energy transfer theory, this study investigates the seasonal eddy variability in the Kuroshio Extension. Distinct seasonal cycles of eddy kinetic energy (EKE) are observed in the upstream and downstream regions of the Kuroshio Extension. In the upstream Kuroshio Extension, the EKE peaks in summer and reaches its minimum in winter over an annual cycle. By diagnosing the spatiotemporal structures of the canonical barotropic and baroclinic energy transfers, we found that internal processes due to mixed instabilities (i.e., both barotropic and baroclinic instabilities) are responsible for the seasonal eddy variability in this region. In the downstream Kuroshio Extension, the EKE exhibits a different annual cycle, peaking in spring and gradually decaying from summer to winter. Significant inverse barotropic energy transfer is found in this region throughout the year, leaving baroclinic instability the primary energy source for the regional seasonal eddy variability. Besides the internal redistribution, it is also evident that the external forcing may influence the Kuroshio Extension EKE seasonality—the EKE is found to be more damped by winds during winter than summer.


2008 ◽  
Vol 38 (6) ◽  
pp. 1327-1333 ◽  
Author(s):  
Stefano Pierini

Abstract The decadal chaotic relaxation oscillation obtained in a recent double-gyre model study of the Kuroshio Extension intrinsic low-frequency variability was found to compare surprisingly well with the real variability of the jet as revealed by altimeter data, despite the high degree of idealization of the model. In this note it is shown that elements of realism in the basin geometry, present in that study and absent in previous double-gyre models applied to the Kuroshio Extension, play a crucial role in shaping the low-frequency variability of the jet, and can explain the good performance of the model. A series of numerical experiments with different basin geometries of increasing degrees of simplicity are analyzed. If the schematic western boundary representing the coastline south of Japan is removed, the strong decadal variability completely disappears and only a very weak periodic oscillation about an elongated state of the jet is found. If the large zonal width of the basin (representing correctly the extension of the North Pacific Ocean) is reduced by a half, then the total meridional Sverdrup transport is reduced by the same factor, and so is the intensity of the Kuroshio and Oyashio western boundary currents: as a result, the modeled Kuroshio Extension is totally unrealistic in shape and is steady. If both simplifications are introduced the resulting jet is, again, totally unrealistic, yielding a weak periodic bimodal cycle. On the basis of these results, two main conclusions are drawn: (i) the introduction of appropriate geometrical elements of realism in double-gyre model studies of the Kuroshio Extension is essential, and (ii) the Kuroshio Extension intrinsic low-frequency variability would be dramatically different if the southwestern coastline of Japan were more meridionally oriented.


Sign in / Sign up

Export Citation Format

Share Document