Recent Changes in the Pacific Subtropical Cells Inferred from an Eddy-Resolving Ocean Circulation Model*

2007 ◽  
Vol 37 (5) ◽  
pp. 1340-1356 ◽  
Author(s):  
Wei Cheng ◽  
Michael J. McPhaden ◽  
Dongxiao Zhang ◽  
E. Joseph Metzger

Abstract In this study the subtropical cells (STC) in the Pacific Ocean are analyzed using an eddy-resolving ocean general circulation model driven by atmospheric forcing for the years 1992–2003. In particular, the authors seek to identify decadal changes in the STCs in the model and to compare them with observations in order to understand the consequences of such changes for the equatorial ocean heat and mass budgets. The simulation shows a trend toward increasing pycnocline volume transport at 9°N and 9°S across the basin from 1992 to 2003. This increase [4.9 ± 1.0 Sv (Sv ≡ 106 m3 s−1)] is in qualitative agreement with observations and is attributed primarily to changes in the interior ocean transport, which are partially compensated by opposing western boundary transports. The subtropical meridional volume transport convergence anomalies in the model pycnocline are found to be consistent with anomalous volume transports in both the observed and modeled Equatorial Undercurrent, as well as with the magnitude of simulated anomalous upwelling transport at the base of the mixed layer in the eastern Pacific. As a result of the increased circulation intensity, heat transport divergence through the lateral boundaries of the tropical control volume (defined as the region between 9°N and 9°S, and from the surface to σθ = 25.3 isopycnal) increases, leading to a cooling of the tropical upper ocean despite the fact that net surface heat flux into the control volume has increased in the same time. As such, these results suggest that wind-driven changes in ocean transports associated with the subtropical cells play a central role in regulating tropical Pacific climate variability on decadal time scales.

2003 ◽  
Vol 15 (1) ◽  
pp. 13-23 ◽  
Author(s):  
DAVID M. HOLLAND ◽  
STANLEY S. JACOBS ◽  
ADRIAN JENKINS

We applied a modified version of the Miami isopycnic coordinate ocean general circulation model (MICOM) to the ocean cavity beneath the Ross Ice Shelf to investigate the circulation of ocean waters in the sub-ice shelf cavity, along with the melting and freezing regimes at the base of the ice shelf. Model passive tracers are utilized to highlight the pathways of waters entering and exiting the cavity, and output is compared with data taken in the cavity and along the ice shelf front. High Salinity Shelf Water on the western Ross Sea continental shelf flows into the cavity along the sea floor and is transformed into Ice Shelf Water upon contact with the ice shelf base. Ice Shelf Water flows out of the cavity mainly around 180°, but also further east and on the western side of McMurdo Sound, as observed. Active ventilation of the region near the ice shelf front is forced by seasonal variations in the density structure of the water column to the north, driving rapid melting. Circulation in the more isolated interior is weaker, leading to melting at deeper ice and refreezing beneath shallower ice. Net melting over the whole ice shelf base is lower than other estimates, but is likely to increase as additional forcings are added to the model.


2017 ◽  
Vol 47 (8) ◽  
pp. 1941-1959 ◽  
Author(s):  
David S. Trossman ◽  
Brian K. Arbic ◽  
David N. Straub ◽  
James G. Richman ◽  
Eric P. Chassignet ◽  
...  

AbstractMotivated by the substantial sensitivity of eddies in two-layer quasigeostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer, β-plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough-bottom basin simulations, in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.


2017 ◽  
Vol 47 (1) ◽  
pp. 211-225 ◽  
Author(s):  
Qing Lu ◽  
Zhenxin Ruan ◽  
Dong-Ping Wang ◽  
Dake Chen ◽  
Qiaoyan Wu

AbstractObservations from TRITON buoys in the warm/fresh pool and a global ocean general circulation model are used to study the interannual variability of the equatorial western Pacific and the relationship between the zonal warm water transport, meridional convergence, and the warm water volume (WWV). The simulated temperature, salinity, and zonal warm water transport are validated with the mooring observations for the period 2000–14. The model results are then used to examine the WWV balance in ENSO cycles in an extended period from 1980 to 2014. It is shown that the zonal transport is highly correlated with meridional convergence and leads by about 4–5 months, and their phase offset determines the WWV changes. This result differs from the recharge paradigm in which the meridional convergence is supposed to be mainly responsible for the WWV changes. There is also no apparent change in relationship between zonal and meridional transports since 2000, unlike that between WWV and SST. The study suggests that the zonal warm water transport from the western boundary could have major implications for ENSO dynamics.


2016 ◽  
Author(s):  
Christoph Heinze ◽  
Babette Hoogakker ◽  
Arne Winguth

Abstract. What role did changes in marine carbon cycle processes and calcareous organisms play for glacial-interglacial variation in atmospheric pCO2? In order to answer this question, we explore results from an ocean biogeochemical ocean general circulation model. We make an attempt to systematically reconcile model results with time dependent sediment core data from the observations. For this purpose, simulated sensitivities of oceanic tracer concentrations to changes in governing carbon cycle parameters are fitted to measured sediment core data.We assume that the time variation of the governing carbon cycle parameters follows the general pattern of the glacial-interglacial deuterium anomaly. Our analysis provides an independent estimate of a maximum mean sea surface temperature drawdown of about 5 °C and a maximum outgassing of the land biosphere by about 430 PgC at the last glacial maximum as compared to preindustrial times. The overall fit of modelled paleoclimate tracers to observations, however, remains quite weak indicating the potential of more detailed modelling studies for full exploitation of the information as stored in the paleo-climatic archive. It can be confirmed, however, that a decline in ocean temperature and a more efficient biological carbon pump in combination with changes in ocean circulation are the key factors for explaining the glacial CO2 drawdown. The analysis suggests that potential changes in the export rain ratio POC:CaCO3 may not have a substantial imprint on the paleo-climatic archive. The use of the last glacial as an inverted analogue to potential ocean acidification impacts thus may be quite limited. A potential strong decrease in CaCO3 export production could contribute to the glacial CO2 decline in the atmosphere but remains hypothetical.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Marlin Chrisye Wattimena ◽  
Agus Saleh Atmadipoera ◽  
Mulia Purba ◽  
I Wayan Nurjaya ◽  
Fadli Syamsudin

This study investigates the coherency of volume transport between Halmahera throughflow and current major system in the western equatorial Pacific Ocean (Mindanao Current – MC, New Guinea Coastal/Under Current – NGCC/NGCUC, and North Equatorial Counter Current – NECC). The validated daily ocean general circulation model datasets of INDESO (2010-2014) were used in this study. The results showed that the estimated average transport volume was 25.6 Sv flowing southward through MC, 34.5 Sv flowing eastward through NECC, 18.3 Sv flowing northwestward through NGCC/NGCUC, and 2.5 Sv flowing southward through the Halmahera Sea. The variability of volume transport was dominated by intraseasonal, semiannual, and annual time-scales. The increased transport of NECC corresponded to the intensification of MC and NGCC/NGCUC transports. NGCC/ NGCUC significantly controlled the South Pacific water inflow into the Halmahera Sea because of the positively high correlation between NGCC/NGCUC transport and Halmahera throughflow transport.


Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 151-164 ◽  
Author(s):  
K. Haines ◽  
J. A. Johannessen ◽  
P. Knudsen ◽  
D. Lea ◽  
M.-H. Rio ◽  
...  

Abstract. We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean general circulation model. It covers the combination of the geoid information with time-mean sea level information derived from satellite altimeter data, to construct a mean dynamic topography (MDT), and considers how this complements the time-varying sea level anomaly, also available from the satellite altimeter. We particularly consider the compatibility of these different fields in their spatial scale content, their temporal representation, and in their error covariances. These considerations are very important when the resulting data are to be used to estimate ocean circulation and its corresponding errors. We describe the further steps needed for assimilating the resulting dynamic topography information into an ocean circulation model using three different operational forecasting and data assimilation systems. We look at methods used for assimilating altimeter anomaly data in the absence of a suitable geoid, and then discuss different approaches which have been tried for assimilating the additional geoid information. We review the problems that have been encountered and the lessons learned in order the help future users. Finally we present some results from the use of GRACE geoid information in the operational oceanography community and discuss the future potential gains that may be obtained from a new GOCE geoid.


1997 ◽  
Vol 25 ◽  
pp. 116-120 ◽  
Author(s):  
S. Legutke ◽  
E. Maier-Reimkr ◽  
A. Stössel ◽  
A. Hellbach

A global ocean general circulation model has been coupled with a dynamic thermodynamic sea-ice model. This model has been spun-up in a 1000 year integration using daily atmosphere model data. Main water masses and currents are reproduced as well as the seasonal characteristics of the ice cover of the Northern and Southern Hemispheres. Model results for the Southern Ocean, however, show the ice cover as too thin, and there are large permanent polynyas in the Weddell and Ross Seas. These polynyas are due to a large upward oceanic heat flux caused by haline rejection during the freezing of sea ice. Sensitivity studies were performed to test several ways of treating the sea-surface salinity and the rejected brine. The impact on the ice cover, water-mass characteristics, and ocean circulation are described.


2008 ◽  
Vol 21 (11) ◽  
pp. 2558-2572 ◽  
Author(s):  
Paul R. Holland ◽  
Adrian Jenkins ◽  
David M. Holland

Abstract A three-dimensional ocean general circulation model is used to study the response of idealized ice shelves to a series of ocean-warming scenarios. The model predicts that the total ice shelf basal melt increases quadratically as the ocean offshore of the ice front warms. This occurs because the melt rate is proportional to the product of ocean flow speed and temperature in the mixed layer directly beneath the ice shelf, both of which are found to increase linearly with ocean warming. The behavior of this complex primitive equation model can be described surprisingly well with recourse to an idealized reduced system of equations, and it is shown that this system supports a melt rate response to warming that is generally quadratic in nature. This study confirms and unifies several previous examinations of the relation between melt rate and ocean temperature but disagrees with other results, particularly the claim that a single melt rate sensitivity to warming is universally valid. The hypothesized warming does not necessarily require a heat input to the ocean, as warmer waters (or larger volumes of “warm” water) may reach ice shelves purely through a shift in ocean circulation. Since ice shelves link the Antarctic Ice Sheet to the climate of the Southern Ocean, this finding of an above-linear rise in ice shelf mass loss as the ocean steadily warms is of significant importance to understanding ice sheet evolution and sea level rise.


Sign in / Sign up

Export Citation Format

Share Document