scholarly journals Evaluating Medium-Range Tropical Cyclone Forecasts in Uniform- and Variable-Resolution Global Models

2016 ◽  
Vol 144 (11) ◽  
pp. 4141-4160 ◽  
Author(s):  
Christopher A. Davis ◽  
David A. Ahijevych ◽  
Wei Wang ◽  
William C. Skamarock

Abstract An evaluation of medium-range forecasts of tropical cyclones (TCs) is performed, covering the eastern North Pacific basin during the period 1 August–3 November 2014. Real-time forecasts from the Model for Prediction Across Scales (MPAS) and operational forecasts from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) are evaluated. A new TC-verification method is introduced that treats TC tracks as objects. The method identifies matching pairs of forecast and observed tracks, missed and false alarm tracks, and derives statistics using a multicategory contingency table methodology. The formalism includes track, intensity, and genesis. Two configurations of MPAS, a uniform 15-km mesh and a variable-resolution mesh transitioning from 60 km globally to 15 km over the eastern Pacific, are compared with each other and with the operational GFS. The two configurations of MPAS reveal highly similar forecast skill and biases through at least day 7. This result supports the effectiveness of TC prediction using variable resolution. Both MPAS and the GFS suffer from biases in predictions of genesis at longer time ranges; MPAS produces too many storms whereas the GFS produces too few. MPAS better discriminates hurricanes than does the GFS, but the false alarms in MPAS lower overall forecast skill in the medium range relative to GFS. The biases in MPAS forecasts are traced to errors in the parameterization of shallow convection south of the equator and the resulting erroneous invigoration of the ITCZ over the eastern North Pacific.

2019 ◽  
Vol 147 (8) ◽  
pp. 2997-3023 ◽  
Author(s):  
Craig S. Schwartz

Abstract Two sets of global, 132-h (5.5-day), 10-member ensemble forecasts were produced with the Model for Prediction Across Scales (MPAS) for 35 cases in April and May 2017. One MPAS ensemble had a quasi-uniform 15-km mesh while the other employed a variable-resolution mesh with 3-km cell spacing over the conterminous United States (CONUS) that smoothly relaxed to 15 km over the rest of the globe. Precipitation forecasts from both MPAS ensembles were objectively verified over the central and eastern CONUS to assess the potential benefits of configuring MPAS with a 3-km mesh refinement region for medium-range forecasts. In addition, forecasts from NCEP’s operational Global Ensemble Forecast System were evaluated and served as a baseline against which to compare the experimental MPAS ensembles. The 3-km MPAS ensemble most faithfully reproduced the observed diurnal cycle of precipitation throughout the 132-h forecasts and had superior precipitation skill and reliability over the first 48 h. However, after 48 h, the three ensembles had more similar spread, reliability, and skill, and differences between probabilistic precipitation forecasts derived from the 3- and 15-km MPAS ensembles were typically statistically insignificant. Nonetheless, despite fewer benefits of increased resolution for spatial placement after 48 h, 3-km ensemble members explicitly provided potentially valuable guidance regarding convective mode throughout the 132-h forecasts while the other ensembles did not. Collectively, these results suggest both strengths and limitations of medium-range high-resolution ensemble forecasts and reveal pathways for future investigations to improve understanding of high-resolution global ensembles with variable-resolution meshes.


Author(s):  
Parthasarathi Mukhopadhyay ◽  
Peter Bechtold ◽  
Yuejian Zhu ◽  
R. Phani Murali Krishna ◽  
Siddharth Kumar ◽  
...  

AbstractDuring August 2018 and 2019 the southern state of India, Kerala received unprecedented heavy rainfall which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state of the art global prediction systems, the National Centre for Environmental Prediction (NCEP) based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium Range Weather Forecast (ECMWF) integrated forecast system (IFS) and the Unified Model based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF).Satellite, radar and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range, sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the ERA5 (ECMWF Reanalyses version 5) reanalyses and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column integrated precipitable water tendency, however is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019.Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skilful than the deterministic forecasts, as they were able to predict rainfall anomalies (>3 standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Russell L. Elsberry ◽  
Hsiao-Chung Tsai ◽  
Wei-Chia Chin ◽  
Timothy P. Marchok

Marchok vortex tracker outputs from the European Centre for Medium-Range Weather Forecasts ensemble (ECEPS) and National Centers for Environmental Prediction ensemble (GEFS) are utilized to provide the Time-to-Formation (T2F of 25 kt or 35 kt) timing and positions along the weighted-mean vector motion (WMVM) track forecasts, and our weighted analog intensity Pacific (WAIP) technique provides 7-day intensity forecasts after the T2F. Example T2F(35) forecasts up to 5 days in advance of two typhoons and one non-developer in the western North Pacific are described in detail. An example T2F forecast of pre-Hurricane Kiko in the eastern North Pacific indicated that Hawaii would be under threat by the end of the 15-day ECEPS WMVM track forecast. An example T2F forecast of pre-Hurricane Lorenzo in the eastern Atlantic demonstrates that both the ECEPS and GEFS predict up to 5 days in advance that the precursor African wave will become a Tropical Storm off the west coast and will likely become a hurricane. Validations of the T2F(25) and T2F(35) timing and position errors are provided for all ECEPS and GEFS forecasts of the two typhoons and Hurricanes Kiko and Lorenzo. If the T2F timing errors are small (<1 day), the T2F position errors along the WMVM track forecasts will be small (<300 km). Although the primary focus is on the western North Pacific, the examples from the Atlantic and eastern/central North Pacific indicate the potential for future application in other basins.


1985 ◽  
Author(s):  
P. A. Petit ◽  
H. D. Hamilton ◽  
R. L. Elsberry

Author(s):  
Haowen Yue ◽  
Mekonnen Gebremichael ◽  
Vahid Nourani

Abstract Reliable weather forecasts are valuable in a number of applications, such as, agriculture, hydropower, and weather-related disease outbreaks. Global weather forecasts are widely used, but detailed evaluation over specific regions is paramount for users and operational centers to enhance the usability of forecasts and improve their accuracy. This study presents evaluation of the Global Forecast System (GFS) medium-range (1 day – 15 day) precipitation forecasts in the nine sub-basins of the Nile basin using NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations. The GFS products are available at a temporal resolution of 3-6 hours, spatial resolution of 0.25°, and its version-15 products are available since 12 June 2019. GFS forecasts are evaluated at a temporal scale of 1-15 days, spatial scale of 0.25° to all the way to the sub-basin scale, and for a period of one year (15 June 2019 – 15 June 2020). The results show that performance of the 1-day lead daily basin-averaged GFS forecast performance, as measured through the modified Kling-Gupta Efficiency (KGE), is poor (0 < KGE < 0.5) for most of the sub-basins. The factors contributing to the low performance are: (1) large overestimation bias in watersheds located in wet climate regimes in the northern hemispheres (Millennium watershed, Upper Atbara & Setit watershed, and Khashm El Gibra watershed), and (2) lower ability in capturing the temporal dynamics of watershed-averaged rainfall that have smaller watershed areas (Roseires at 14,110 sq. km and Sennar at 13,895 sq. km). GFS has better bias for watersheds located in the dry parts of the northern hemisphere or wet parts of the southern hemisphere, and better ability in capturing the temporal dynamics of watershed-average rainfall for large watershed areas. IMERG Early has better bias than GFS forecast for the Millennium watershed but still comparable and worse bias for the Upper Atbara & Setit, and Khashm El Gibra watersheds. The variation in the performance of the IMERG Early could be partly explained by the number of rain gauges used in the reference IMERG Final product, as 16 rain gauges were used for the Millennium watershed but only one rain gauge over each Upper Atbara & Setit, and Khashm El Gibra watershed. A simple climatological bias-correction of IMERG Early reduces in the bias in IMERG Early over most watersheds, but not all watersheds. We recommend exploring methods to increase the performance of GFS forecasts, including post-processing techniques through the use of both near-real-time and research-version satellite rainfall products.


2018 ◽  
Vol 18 (18) ◽  
pp. 13547-13579 ◽  
Author(s):  
Zachary D. Lawrence ◽  
Gloria L. Manney ◽  
Krzysztof Wargan

Abstract. We compare herein polar processing diagnostics derived from the four most recent “full-input” reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3 K at some levels in the SH (1.5 K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5 % of a hemisphere (0.75 % of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1 K in both hemispheres, and average APSC differences less than 0.3 % of a hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.


2020 ◽  
Vol 148 (12) ◽  
pp. 4747-4765
Author(s):  
Nicholas J. Weber ◽  
Clifford F. Mass ◽  
Daehyun Kim

AbstractMonthlong simulations targeting four Madden–Julian oscillation events made with several global model configurations are verified against observations to assess the roles of grid spacing and convective parameterization on the representation of tropical convection and midlatitude forecast skill. Specifically, the performance of a global convection-permitting model (CPM) configuration with a uniform 3-km mesh is compared to that of a global 15-km mesh with and without convective parameterization, and of a variable-resolution “channel” simulation using 3-km grid spacing only in the tropics with a scale-aware convection scheme. It is shown that global 3-km simulations produce realistic tropical precipitation statistics, except for an overall wet bias and delayed diurnal cycle. The channel simulation performs similarly, although with an unrealistically higher frequency of heavy rain. The 15-km simulations with and without cumulus schemes produce too much light and heavy tropical precipitation, respectively. Without convection parameterization, the 15-km global model produces unrealistically abundant, short-lived, and intense convection throughout the tropics. Only the global CPM configuration is able to capture eastward-propagating Madden–Julian oscillation events, and the 15-km runs favor stationary or westward-propagating convection organized at the planetary scale. The global 3-km CPM exhibits the highest extratropical forecast skill aloft and at the surface, particularly during week 3 of each hindcast. Although more cases are needed to confirm these results, this study highlights many potential benefits of using global CPMs for subseasonal forecasting. Furthermore, results show that alternatives to global convection-permitting resolution—using coarser or spatially variable resolution—feature compromises that may reduce their predictive performance.


2014 ◽  
Vol 7 (2) ◽  
pp. 2249-2291 ◽  
Author(s):  
J. K. Fletcher ◽  
C. S. Bretherton ◽  
H. Xiao ◽  
R. Sun ◽  
J. Han

Abstract. The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of shortwave cloud radiative forcing, and affect predicted sea-surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parametrisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.


2014 ◽  
Vol 7 (2) ◽  
pp. 1001-1025
Author(s):  
L. L. Smith ◽  
J. C. Gille

Abstract. Global satellite observations from the EOS Aura spacecraft's High Resolution Dynamics Limb Sounder (HIRDLS) of temperature and geopotential height (GPH) are discussed. The accuracy, resolution and precision of the HIRDLS version 7 algorithms are assessed and data screening recommendations are made. Comparisons with GPH from observations, reanalyses and models including European Center for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis, Goddard Earth Observing System Model (GEOS) version 5, and EOS Aura Microwave Limb Sounder (MLS) illustrate the HIRDLS GPH have a precision ranging from 2 m to 30 m and an accuracy of ±100 m. Comparisons indicate HIRDLS GPH may have a slight low bias in the tropics and a slight high bias at high latitudes. Geostrophic winds computed with HIRDLS GPH qualitatively agree with winds from other data sources including ERA-Interim, NCEP and GEOS-5.


Sign in / Sign up

Export Citation Format

Share Document