scholarly journals Improving Particle Filter Performance by Smoothing Observations

2018 ◽  
Vol 146 (8) ◽  
pp. 2433-2446 ◽  
Author(s):  
Gregor Robinson ◽  
Ian Grooms ◽  
William Kleiber

AbstractThis article shows that increasing the observation variance at small scales can reduce the ensemble size required to avoid collapse in particle filtering of spatially extended dynamics and improve the resulting uncertainty quantification at large scales. Particle filter weights depend on how well ensemble members agree with observations, and collapse occurs when a few ensemble members receive most of the weight. Collapse causes catastrophic variance underestimation. Increasing small-scale variance in the observation error model reduces the incidence of collapse by de-emphasizing small-scale differences between the ensemble members and the observations. Doing so smooths the posterior mean, though it does not smooth the individual ensemble members. Two options for implementing the proposed observation error model are described. Taking a discretized elliptic differential operator as an observation error covariance matrix provides the desired property of a spectrum that grows in the approach to small scales. This choice also introduces structure exploitable by scalable computation techniques, including multigrid solvers and multiresolution approximations to the corresponding integral operator. Alternatively the observations can be smoothed and then assimilated under the assumption of independent errors, which is equivalent to assuming large errors at small scales. The method is demonstrated on a linear stochastic partial differential equation, where it significantly reduces the occurrence of particle filter collapse while maintaining accuracy. It also improves continuous ranked probability scores by as much as 25%, indicating that the weighted ensemble more accurately represents the true distribution. The method is compatible with other techniques for improving the performance of particle filters.

Author(s):  
Ronan Arraes Jardim Chagas ◽  
Jacques Waldmann

A Rao-Blackwellized particle filter has been designed and its performance investigated in a simulated three-axis satellite testbed used for evaluating on-board attitude estimation and control algorithms. Vector measurements have been used to estimate attitude and angular rate and, additionally, a pseudo-measurement based on a low-pass filtered time-derivative of the vector measurements has been proposed to improve the filter performance. Conventional extended and unscented Kalman filters, and standard particle filtering have been compared with the proposed approach to gauge its performance regarding attitude and angular rate estimation accuracy, computational workload, convergence rate under uncertain initial conditions, and sensitivity to disturbances. Though a myriad of filters have been proposed in the past to tackle the problem of spacecraft attitude and angular rate estimation with vector observations, to the best knowledge of the authors the present Rao-Blackwellized particle filter is a novel approach that significantly reduces the computational load, provides an attractive convergence rate, and successfully preserves the performance of the standard particle filter when subjected to disturbances.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2019 ◽  
Vol 9 (4) ◽  
pp. 222-226
Author(s):  
K.C. Kavipriya

Economic Development of a country depends upon the individual development; Creation of more Employment opportunities is the right way to strengthen our Economy. By way of strengthening Small scale units, ultimately more people will get Employment. More over Small scale Industries required less amount of Capital. These are the main reasons to start the scheme MUDRA. The scheme MUDRA was launched in the year 2015 by Government of India. In India most of the people are depending upon small scale businesses as their source of livelihood. Most of the individuals depend on un-organised sectors for loans and other credit facilities which have high rate of interest along with unbearable terms and conditions. Ultimately it will lead these poor people to fall in debts. This paper is an attempt to educate the readers about MUDRA Yojana.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 569-591 ◽  
Author(s):  
HOONG CHIEH YEONG ◽  
JUN HYUN PARK ◽  
N. SRI NAMACHCHIVAYA

The study of random dynamical systems involves understanding the evolution of state variables that contain uncertainties and that are usually hidden, or not directly observable. Therefore, state variables have to be estimated and updated based on system models using information from observational data, which themselves are noisy, in the sense that they contain uncertainties and disturbances due to imperfections in observational devices and disturbances in the environment within which data are being collected. The development of efficient data assimilation methods for integrating observational data in predicting the evolution of random state variables is thus an important aspect in the study of random dynamical systems. In this paper, we consider a particle filtering approach to nonlinear filtering in multiscale dynamical systems. Particle filtering methods [1–3] utilizes ensembles of particles to represent the conditional density of state variables using particle positions, distributed over a sample space. The distribution of an ensemble of particles is updated using observational data to obtain the best representation of the conditional density of the state variables of interest. On the other hand, homogenization theory [4, 5], allows us to estimate the coarse-grained (slow) dynamics of a multiscale system on a larger timescale without having to explicitly study the fast variable evolution on a small timescale. The results of filter convergence presented in [6] shows the convergence of the filter of the actual state variable to a homogenized solution to the original multiscale system, and thus we develop a particle filtering scheme for multiscale random dynamical systems that utilizes this convergence result. This particle filtering method is called the Homogenized Hybird Particle Filter, and it incorporates a multiscale computation scheme, the Heterogeneous Multiscale Method developed in [7], with the novel branching particle filter described in [8–10]. By incorporating a multiscale scheme based on homogenization of the original system, estimation of the coarse-grained dynamics using observational data is performed over a larger timescale, thus resulting in computational time and cost reduction in terms of the evolution of the state variables as well as functional evaluations for the filtering aspect. We describe the theory behind this combined scheme and its general algorithm, concluded with an application to the Lorenz-96 [11] atmospheric model that mimics midlatitude geophysical dynamics with microscopic convective processes.


Author(s):  
Patrick Degryse

This chapter is partly based upon the results of the ARCHGLASS project, which analysed samples dating from the middle of the first millennium BC to the ninth century AD. With the introduction of Greco-Roman translucent glass, colour separation and control over the properties of a re-molten batch become much easier. Once the benefits of glass recycling in terms of raw material procurement, energy expenditure, and waste management are clear, the collection and reuse of cullet becomes common in the Roman world. It is estimated here that upwards from a quarter of the glass circulating in the Roman to early Byzantine economy at any time constitutes recycled glass. It is hypothesized that, apart from the possible addition of cullet to tank furnaces, glass recycling would have been a small-scale process, at the level of the individual workshop.


2019 ◽  
Vol 148 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Takuya Kawabata ◽  
Genta Ueno

Abstract Non-Gaussian probability density functions (PDFs) in convection initiation (CI) and development were investigated using a particle filter with a storm-scale numerical prediction model and an adaptive observation error estimator (NHM-RPF). An observing system simulation experiment (OSSE) was conducted with a 90-min assimilation period and 1000 particles at a 2-km grid spacing. Pseudosurface observations of potential temperature (PT), winds, water vapor (QV), and pseudoradar observations of rainwater (QR) in the lower troposphere were created in a nature run that simulated a well-developed cumulonimbus. The results of the OSSE (PF) show a significant improvement in comparison to ensemble simulations without any observations. The Gaussianity of the PDFs for PF in the CI area was evaluated using the Bayesian information criterion to compare goodness-of-fit of Gaussian, two-Gaussian mixture, and histogram models. The PDFs are strongly non-Gaussian when NHM-RPF produces diverse particles over the CI period. The non-Gaussian PDF of the updraft is followed by the upper-bounded PDF of the relative humidity, which produces non-Gaussian PDFs of QV and PT. The PDFs of the cloud water and QR are strongly non-Gaussian throughout the experimental period. We conclude that the non-Gaussianity of the CI originated from the non-Gaussianity of the updraft. In addition, we show that the adaptive observation error estimator significantly contributes to the stability of PF and the robustness to many observations.


Author(s):  
Emma Rary ◽  
Sarah M. Anderson ◽  
Brandon D. Philbrick ◽  
Tanvi Suresh ◽  
Jasmine Burton

The health of individuals and communities is more interconnected than ever, and emergent technologies have the potential to improve public health monitoring at both the community and individual level. A systematic literature review of peer-reviewed and gray literature from 2000-present was conducted on the use of biosensors in sanitation infrastructure (such as toilets, sewage pipes and septic tanks) to assess individual and population health. 21 relevant papers were identified using PubMed, Embase, Global Health, CDC Stacks and NexisUni databases and a reflexive thematic analysis was conducted. Biosensors are being developed for a range of uses including monitoring illicit drug usage in communities, screening for viruses and diagnosing conditions such as diabetes. Most studies were nonrandomized, small-scale pilot or lab studies. Of the sanitation-related biosensors found in the literature, 11 gathered population-level data, seven provided real-time continuous data and 14 were noted to be more cost-effective than traditional surveillance methods. The most commonly discussed strength of these technologies was their ability to conduct rapid, on-site analysis. The findings demonstrate the potential of this emerging technology and the concept of Smart Sanitation to enhance health monitoring at the individual level (for diagnostics) as well as at the community level (for disease surveillance).


2018 ◽  
Vol 12 (7) ◽  
pp. 2287-2306 ◽  
Author(s):  
Gaia Piazzi ◽  
Guillaume Thirel ◽  
Lorenzo Campo ◽  
Simone Gabellani

Abstract. The accuracy of hydrological predictions in snow-dominated regions deeply depends on the quality of the snowpack simulations, with dynamics that strongly affect the local hydrological regime, especially during the melting period. With the aim of reducing the modelling uncertainty, data assimilation techniques are increasingly being implemented for operational purposes. This study aims to investigate the performance of a multivariate sequential importance resampling – particle filter scheme, designed to jointly assimilate several ground-based snow observations. The system, which relies on a multilayer energy-balance snow model, has been tested at three Alpine sites: Col de Porte (France), Torgnon (Italy), and Weissfluhjoch (Switzerland). The implementation of a multivariate data assimilation scheme faces several challenging issues, which are here addressed and extensively discussed: (1) the effectiveness of the perturbation of the meteorological forcing data in preventing the sample impoverishment; (2) the impact of the parameter perturbation on the filter updating of the snowpack state; the system sensitivity to (3) the frequency of the assimilated observations, and (4) the ensemble size.The perturbation of the meteorological forcing data generally turns out to be insufficient for preventing the sample impoverishment of the particle sample, which is highly limited when jointly perturbating key model parameters. However, the parameter perturbation sharpens the system sensitivity to the frequency of the assimilated observations, which can be successfully relaxed by introducing indirectly estimated information on snow-mass-related variables. The ensemble size is found not to greatly impact the filter performance in this point-scale application.


2010 ◽  
Author(s):  
Colin W. Jemmott ◽  
Richard L. Culver ◽  
Jack W. Langelaan

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1271
Author(s):  
Jiri Neustupa ◽  
Yvonne Nemcova

Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments.


Sign in / Sign up

Export Citation Format

Share Document