scholarly journals Land Surface Parameter and State Perturbations in the Global Ensemble Forecast System

2019 ◽  
Vol 147 (4) ◽  
pp. 1319-1340
Author(s):  
Maria Gehne ◽  
Thomas M. Hamill ◽  
Gary T. Bates ◽  
Philip Pegion ◽  
Walter Kolczynski

Abstract The National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) is underdispersive near the surface, a common characteristic of ensemble prediction systems. Here, several methods for increasing the spread are tested, including perturbing soil initial conditions, soil tendencies, and surface parameters, with physically based perturbations. Perturbations are applied to the soil initial conditions based on empirical orthogonal functions (EOFs) of differences between normalized soil moisture states from two land surface models (LSMs). Perturbations to roughness lengths for heat and momentum, soil hydraulic conductivity, stomatal resistance, vegetation fraction, and albedo are applied, with the amplitude and perturbation scales based on previous research. Soil moisture and temperature tendencies are also perturbed using a stochastic perturbation scheme. The results show that surface perturbations, through their impact on 2-m temperature spread, have a modest positive impact on the skill of short-range ensemble forecasts. However, adjusting the forecasts using an estimate of the systematic bias shows that bias correction has a greater impact on the forecast reliability than surface perturbations, indicating that systematic bias in the model needs to be addressed as well.

2015 ◽  
Vol 19 (1) ◽  
pp. 615-629 ◽  
Author(s):  
X. Han ◽  
H.-J. H. Franssen ◽  
R. Rosolem ◽  
R. Jin ◽  
X. Li ◽  
...  

Abstract. The recent development of the non-invasive cosmic-ray soil moisture sensing technique fills the gap between point-scale soil moisture measurements and regional-scale soil moisture measurements by remote sensing. A cosmic-ray probe measures soil moisture for a footprint with a diameter of ~ 600 m (at sea level) and with an effective measurement depth between 12 and 76 cm, depending on the soil humidity. In this study, it was tested whether neutron counts also allow correcting for a systematic error in the model forcings. A lack of water management data often causes systematic input errors to land surface models. Here, the assimilation procedure was tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental Research – HiWATER, 2012) where no irrigation data were available as model input although for the area a significant amount of water was irrigated. In the study, the measured cosmic-ray neutron counts and Moderate-Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products were jointly assimilated into the Community Land Model (CLM) with the local ensemble transform Kalman filter. Different data assimilation scenarios were evaluated, with assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter estimation of leaf area index (LAI). The results show that the direct assimilation of cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) estimation significantly, correcting for lack of information on irrigation amounts. The joint assimilation of neutron counts and LST could improve further the ET estimation, but the information content of neutron counts exceeded the one of LST. Additional improvement was achieved by calibrating LAI, which after calibration was also closer to independent field measurements. It was concluded that assimilation of neutron counts was useful for ET and soil moisture estimation even if the model has a systematic bias like neglecting irrigation. However, also the assimilation of LST helped to correct the systematic model bias introduced by neglecting irrigation and LST could be used to update soil moisture with state augmentation.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


2016 ◽  
Vol 17 (6) ◽  
pp. 1781-1800 ◽  
Author(s):  
Reepal D. Shah ◽  
Vimal Mishra

Abstract Medium-range (~7 days) forecasts of agricultural and hydrologic droughts can help in decision-making in agriculture and water resources management. India has witnessed severe losses due to extreme weather events during recent years and medium-range forecasts of precipitation, air temperatures (maximum and minimum), and hydrologic variables (root-zone soil moisture and runoff) can be valuable. Here, the skill of the Global Ensemble Forecast System (GEFS) reforecast of precipitation and air temperatures is evaluated using retrospective data for the period of 1985–2010. It is found that the GEFS forecast shows better skill in the nonmonsoon season than in the monsoon season in India. Moreover, skill in temperature forecast is higher than that of precipitation in both the monsoon and nonmonsoon seasons. The lower skill in forecasting precipitation during the monsoon season can be attributed to representation of intraseasonal variability in precipitation from the GEFS. Among the selected regions, the northern, northeastern, and core monsoon region showed relatively lower skill in the GEFS forecast. Temperature and precipitation forecasts were corrected from the GEFS using quantile–quantile (Q–Q) mapping and linear scaling, respectively. Bias-corrected forecasts for precipitation and air temperatures were improved over the raw forecasts. The influence of corrected and raw forcings on medium-range soil moisture, drought, and runoff forecasts was evaluated. The results showed that because of high persistence, medium-range soil moisture forecasts are largely determined by the initial hydrologic conditions. Bias correction of precipitation and temperature forecasts does not lead to significant improvement in the medium-range hydrologic forecasting of soil moisture and drought. However, bias correcting raw GEFS forecasts can provide better predictions of the forecasts of precipitation and temperature anomalies over India.


2006 ◽  
Vol 21 (6) ◽  
pp. 1006-1023 ◽  
Author(s):  
Fang-Ching Chien ◽  
Yi-Chin Liu ◽  
Ben Jong-Dao Jou

Abstract This paper presents an evaluation study of a real-time fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) mesoscale ensemble prediction system in the Taiwan area during the 2003 mei-yu season. The ensemble system consists of 16 members that used the same nested domains of 45- and 15-km resolutions, but different model settings of the initial conditions (ICs), the cumulus parameterization scheme (CPS), and the microphysics scheme (MS). Verification of geopotential height, temperature, relative humidity, and winds in the 15-km grid shows that the members using the Kain–Fritsch CPS performed better than those using the Grell CPS, and those using the Central Weather Bureau (CWB) Nonhydrostatic Forecast System (NFS) ICs fared better than those using the CWB Global Forecast System (GFS) ICs. The members applying the mixed-phase MS generally exhibited the smallest errors among the four MSs. Precipitation verification shows that the members using the Grell CPS, in general, had higher equitable threat scores (ETSs) than those using the Kain–Fritsch CPS, that the members with the GFS ICs performed better than with the NFS ICs, and that the mixed-phase and Goddard MSs gave relatively high ETSs in the rainfall simulation. The bias scores show that, overall, all 16 members underforecasted rainfall. Comparisons of the ensemble means show that, on average, an ensemble mean, no matter how many members it contains, can produce better forecasts than an individual member. Among the three possible elements (IC, CPS, and MS) that can be varied to compose an ensemble, the ensemble that contains members with all three elements varying performed the best, while that with two elements varying was second best, and that with only one varying was the worst. Furthermore, the first choice for composing an ensemble is to use perturbed ICs, followed by the perturbed CPS, and then the perturbed MS.


2020 ◽  
Author(s):  
Haojin Zhao ◽  
Roland Baatz ◽  
Carsten Montzka ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

<p>Soil moisture plays an important role in the coupled water and energy cycles of the terrestrial system. However, the characterization of soil moisture at the large spatial scale is far from trivial. To cope with this challenge, the combination of data from different sources (in situ measurements by cosmic ray neutron sensors, remotely sensed soil moisture and simulated soil moisture by models) is pursued. This is done by multiscale data assimilation, to take the different resolutions of the data into account. A large number of studies on the assimilation of remotely sensed soil moisture in land surface models has been published, which show in general only a limited improvement in the characterization of root zone soil moisture, and no improvement in the characterization of evapotranspiration. In this study it was investigated whether an improved modelling of soil moisture content, using a simulation model where the interactions between the land surface, surface water and groundwater are better represented, can contribute to extracting more information from SMAP data. In this study over North-Rhine-Westphalia, the assimilation of remotely sensed soil moisture from SMAP in the coupled land surface-subsurface model TSMP was tested. Results were compared with the assimilation in the stand-alone land surface model CLM. It was also tested whether soil hydraulic parameter estimation in combination with state updating could give additional skill compared to assimilation in CLM stand-alone and without parameter updating. Results showed that modelled soil moisture by TSMP did not show a systematic bias compared to SMAP, whereas CLM was systematically wetter than TSMP. Therefore, no prior bias correction was needed in the data assimilation. The results illustrate how the difference in simulation model and parameter estimation result in significantly different estimated soil moisture contents and evapotranspiration.  </p>


Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

LDAS-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ measurements of soil moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, together with river discharges from the United States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared to an open-loop simulation (i.e. no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions which impacts persist through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.


Author(s):  
Clément Albergel ◽  
Emanuel Dutra ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Simon Munier ◽  
...  

This study aims to assess the potential of the LDAS-Monde a land data assimilation system developed by Météo-France to monitor the impact of the 2018 summer heatwave over western Europe vegetation state. The LDAS-Monde is forced by the ECMWF’s (i) ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis (IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) satellite derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). Analysis of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018) highlights marked negative anomalies for July 2018 affecting large areas of North Western Europe and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the considered domain have never been observed in the LAI product over this 18-yr period. The LDAS-Monde land surface reanalyses were produced at spatial resolutions of 0.25°x0.25° (January 2008 to October 2018) and 0.10°x0.10° (April 2016 to December 2018). Both configuration of the LDAS-Monde forced by either ERA5 or HRES capture well the vegetation state in general and for this specific event, with HRES configuration exhibiting better monitoring skills than ERA5 configuration. The consistency of ERA5 and IFS HRES driven simulations over the common period (April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g. associated to a better representation of the land cover, topography) and using HRES forcing still enhance the skill. While there are advantages in using HRES, there is added value in down-scaling ERA5, which can provide consistent, long term, high resolution land reanalysis. If the improvement from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected, other model variables benefit from the assimilation through biophysical processes and feedbacks in the model. Finally, we also found added value of initializing 8-day land surface HRES driven forecasts from LDAS-Monde analysis when compared with model only initial conditions.


2020 ◽  
Vol 101 (7) ◽  
pp. E1007-E1025 ◽  
Author(s):  
Kristi R. Arsenault ◽  
Shraddhanand Shukla ◽  
Abheera Hazra ◽  
Augusto Getirana ◽  
Amy McNally ◽  
...  

Abstract Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.


2019 ◽  
Vol 20 (5) ◽  
pp. 793-819 ◽  
Author(s):  
Joseph A. Santanello Jr. ◽  
Patricia Lawston ◽  
Sujay Kumar ◽  
Eli Dennis

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.


Author(s):  
Wade T. Crow ◽  
Rolf H. Reichle ◽  
Jianzhi Dong

AbstractRelative to other geophysical variables, soil moisture (SM) estimates derived from land surface models (LSMs) and land data assimilation systems (LDAS) are difficult to transfer between platforms and applications. This difficulty stems from the highly model-dependent nature of LSM SM estimates and differences in the vertical support of discretized SM values. As a result, operational SM estimates generated by one LSM (or LDAS) cannot generally be directly applied to a hydrologic monitoring or forecast system designed around a second LSM. This lack of transferability is particularly problematic for LDAS applications, where the time, expertise, and computational resources required to generate an operational LDAS analysis cannot be practically duplicated for every LSM-specific application. Here, we develop a set of simple regression tools for translating SM estimates between LSMs and multiple LDAS analyses. Results demonstrate that simple multivariate linear regression - utilizing independent variables based on multi-layer and temporally lagged SM estimates - can significantly improve upon baseline transformation approaches using direct percentile matching. The proposed regression approaches are effective for both the LSM-to-LSM and LDAS-to-LDAS transformation of multi-layer SM percentiles. Application of this approach will expand the utility of existing, high-quality (but LSM-specific) operational sources of SM information like the NASA Soil Moisture Active Passive Level-4 Soil Moisture product.


Sign in / Sign up

Export Citation Format

Share Document