scholarly journals Wintertime Easterly and Southeasterly Airflow in the ‘Alenuihāhā Channel, Hawaii

2020 ◽  
Vol 148 (4) ◽  
pp. 1337-1362 ◽  
Author(s):  
David Eugene Hitzl ◽  
Yi-Leng Chen ◽  
Feng Hsiao

Abstract During the wintertime, easterly (E) to southeasterly (SE) flow in the Hawaiian coastal waters is frequent. These wind regimes alter the location and magnitude of channel and tip jet accelerations and the orientation and horizontal extent of the wake zones from east-northeast (ENE) trade wind conditions. The differences are the result of changes in orographic blocking by the Big Island and Maui, with respect to the prevailing wind. During an E wind event, the fastest winds over the ‘Alenuihāhā Channel (>9 m s−1) occur in the channel exit with sinking of the inversion, which rises again downstream. Although the upstream wind speed is similar to typical summer ENE trade winds (7–8 m s−1), the maximum channel wind speed is 3–4 m s−1 slower in the exit. The SE flow is characterized by maximum (~6 m s−1) northeasterly (NE) channel winds along Maui’s south shore and at the channel exit. These winds are the result of orographic blocking on the eastern end of Maui as the northwestern tail of a tip jet off the northeastern coast of the Big Island impinges on Mount Haleakalā. Channel wind speeds are modulated by the speed and direction of this tip jet, which itself varies diurnally and throughout the approach of a midlatitude cold front. Removal of the Big Island shows how the tip jet speed and orientation modulate the pressure gradients and winds in the ‘Alenuihāhā Channel. Removal of the Maui County terrain reveals the impact of orographic blocking on the occurrence of channel winds off Maui’s south shore.

2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Viv Djanat Prasita ◽  
Lukman Aulia Zati ◽  
Supriyatno Widagdo

The wind and wave conditions in the waters of the Kalianget-Kangean cruise route in the west season are relatively high so that these winds and waves can have a dangerous impact on that cruise route. The aim of this research was to analyze the characteristics of wind speed and wave height over a 10 year period (2008-2017), as well as to evaluate the weekly patterns for three months (December 2017-February 2018). These time stamps represent the west season in waters at Kalianget-Kangean route, and to identify the impact of winds and wave on this path. The method used in this research is descriptive statistical analysis to obtain the mean and maximum values ​​of wind speed and wave height. Wind and wave patterns were analyzed by WRPlot and continued with mapping of wind and wave patterns in the waters of Kalianget-Kangean and its surroundings. The data used was obtained from the Meteorology, Climatology and Geophysics Agency. The results show wind and wave characteristics with two peaks formed regularly between 2008-2017, marking the west and east monsoons. In addition, the wind speed and wave height were generally below the danger threshold, ie <10 knots and <2 m, respectively. However, there are exceptions in the west season, especially at the peak in January, where the forces are strengthened with a steady blowing direction. The maximum wind speed reaches and wave height reaches 29 knots and 6.7 m, respectively. The weekly conditions for both parameters from December 2017 to February 2018 were relatively safe, for sailing. Moreover, January 23-29, 2018 featured extreme conditions estimated as dangerous for cruise due to the respective maximum values of 25 knots and 3.8 m recorded. The channel is comparably safe, except during the western season time in December, January, February, characterized by wind speeds and wave height exceeding 21 knots and 2.5 m, correspondingly.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2018 ◽  
Vol 18 (22) ◽  
pp. 16689-16711 ◽  
Author(s):  
Michael R. Giordano ◽  
Lars E. Kalnajs ◽  
J. Douglas Goetz ◽  
Anita M. Avery ◽  
Erin Katz ◽  
...  

Abstract. A fundamental understanding of the processes that control Antarctic aerosols is necessary in determining the aerosol impacts on climate-relevant processes from Antarctic ice cores to clouds. The first in situ observational online composition measurements by an aerosol mass spectrometer (AMS) of Antarctic aerosols were only recently performed during the Two-Season Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC). 2ODIAC was deployed to sea ice on the Ross Sea near McMurdo Station over two field seasons: austral spring–summer 2014 and winter–spring 2015. The results presented here focus on the overall trends in aerosol composition primarily as functions of air masses and local meteorological conditions. The results suggest that the impact of long-range air mass back trajectories on either the absolute or relative concentrations of the aerosol constituents measured by (and inferred from) an AMS at a coastal location is small relative to the impact of local meteorology. However, when the data are parsed by wind speed, two observations become clear. First, a critical wind speed is required to loft snow from the surface, which, in turn, increases particle counts in all measured size bins. Second, elevated wind speeds showed increased aerosol chloride and sodium. Further inspection of the AMS data shows that the increased chloride concentrations have more of a “fast-vaporizing” nature than chloride measured at low wind speed. Also presented are the Cl:Na ratios of snow samples and aerosol filter samples, as measured by ion chromatography, as well as non-chloride aerosol constituents measured by the AMS. Additionally, submicron aerosol iodine and bromine concentrations as functions of wind speed are also presented. The results presented here suggest that aerosol composition in coastal Antarctica is a strong function of wind speed and that the mechanisms determining aerosol composition are likely linked to blowing snow.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


2017 ◽  
Vol 17 (14) ◽  
pp. 9019-9033 ◽  
Author(s):  
Thomas G. Bell ◽  
Sebastian Landwehr ◽  
Scott D. Miller ◽  
Warren J. de Bruyn ◽  
Adrian H. Callaghan ◽  
...  

Abstract. Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.


2007 ◽  
Vol 135 (2) ◽  
pp. 549-566 ◽  
Author(s):  
Shu-Hua Chen

Abstract Three observational datasets of Hurricane Isidore (in 2002) were analyzed and compared: the Special Sensor Microwave Imager (SSM/I), the Quick Scatterometer (QuikSCAT) winds, and dropsonde winds. SSM/I and QuikSCAT winds were on average about 1.9 and 0.3 m s−1 stronger, respectively, than dropsonde winds. With more than 20 000 points of data, SSM/I wind speed was about 2.2 m s−1 stronger than QuikSCAT. Comparison of the wind direction observed by QuikSCAT with those from the dropsondes showed that the quality of QuikSCAT data is good. The effect of assimilating SSM/I wind speeds and/or QuikSCAT wind vectors for the analysis of Hurricane Isidore was assessed using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and its three-dimensional variational data assimilation system. For the Hurricane Isidore case study, it was found that the assimilation of either satellite winds strengthened the cyclonic circulation in the analysis. However, the increment of the QuikSCAT wind analysis is more complicated than that from the SSM/I analysis due to the correction of the storm location, a positive result from the assimilation of wind vectors. The increase in low-level wind speeds enhanced the air–sea interaction processes and improved the simulated intensity for Isidore. In addition, the storm structure was better simulated. Assimilation of QuikSCAT wind vectors clearly improved simulation of the storm track, in particular during the later period of the simulation, but lack of information about the wind direction from SSM/I data prevented it from having much of an effect. Assessing the assimilation of QuikSCAT wind speed versus wind vector data confirmed this hypothesis. The track improvement partially resulted from the relocation of the storm’s initial position after assimilation of the wind vectors. For this case study, it was found that the assimilation of SSM/I or QuikSCAT data had the greatest impact on the Hurricane Isidore simulation during the first 2 days.


2016 ◽  
Vol 17 (12) ◽  
pp. 3029-3043 ◽  
Author(s):  
D. M. Barnard ◽  
W. L. Bauerle

Abstract Characterization of seasonal dynamics in wind speed attenuation within a plant canopy α is necessary for modeling leaf boundary layer conductance , canopy–atmosphere coupling Ω, and transpiration at multiple scales. The goals of this study were to characterize seasonal variation in α in four tree species with canopy wind profiles and a canopy-structure model, to quantify the impact of α on estimates of and Ω, and to determine the influence of variable wind speed on transpiration estimates from a biophysical model [Multi-Array Evaporation Stand Tree Radiation Assemblage (MAESTRA)]. Among species, α varied significantly with above-canopy wind speed and seasonal canopy development. At the mean above-canopy wind speed (1.5 m s−1), α could be predicted using a linear model with leaf area index as the input variable (coefficient of determination R2 = 0.78). However, the canopy-structure model yielded improved predictions (R2 = 0.92) by including canopy height and leaf width. By midseason, increasing canopy leaf area and α resulted in lower within-canopy wind speeds, a decrease in by 20%–50%, and a peak in Ω. Testing a discrete increase in wind speed (0.6–2.4 m s−1; seasonal mean plus/minus one standard deviation) had variable influence on transpiration estimates (from −30% to +20%), which correlated strongly with vapor pressure deficit (R2 = 0.83). Given the importance of α in accurate representation of , Ω, and transpiration, it is concluded that α needs to be given special attention in plant canopies that undergo substantial seasonal changes, especially densely foliated canopies (i.e., leaf area index &gt;1) and in areas with lower native wind speeds (i.e., &lt;2 m s−1).


Author(s):  
Arndt Hildebrandt ◽  
Remo Cossu

There are several intentions to analyze the correlation of wind and wave data, especially in the North Sea. Fatigue damage is intensified by wind and wave loads acting from different directions, due to the misaligned aerodynamic damping of the rotor regarding the wave loads from lateral directions. Furthermore, construction time and costs are mainly driven by the operational times of the working vessels, which strongly depend on the wind and wave occurrence and correlation. Turbulent wind can rapidly change its direction and intensity, while the inert water waves react slowly in relation to the wind profile. Tuerk (2008) investigates the impact of wind and turbulence on offshore wind turbines by analyzing data of four years. The study shows that the wave height is increasing with higher wind speeds but when the wind speed drops the reaction of the waves is postponed. The dependence of the wave height on the wind speed is varying because of the atmospheric stability and different wind directions. Fischer et al. (2011) estimated absolute values of misalignment between wind and waves located in the Dutch North Sea. The study presents decreasing misalignment for increasing wind speeds, ranging up to 90 degrees for wind speeds below 12 m/s and up to 30 degrees for wind speeds above 20 m/s. Bredmose et al. (2013) present a method of offshore wind and wave simulation by using metocean data. The study describes characteristics of the wind and wave climate for the North and Baltic Sea as well as the directional distribution of wind and waves. Güner et al. (2013) cover the development of a statistical wave model for the Karaburun coastal zone located at the southwest coast of the Black Sea with the help of wind and wave measurements and showed that the height of the waves is directly correlating with the duration of the wind for the last four hours.


Sign in / Sign up

Export Citation Format

Share Document