scholarly journals Radar Observations of the Diurnally Forced Offshore Convective Lines along the Southeastern Coast of Taiwan

2005 ◽  
Vol 133 (6) ◽  
pp. 1613-1636 ◽  
Author(s):  
Cheng-Ku Yu ◽  
Ben Jong-Dao Jou

Abstract This study documents offshore convective lines along the southeastern coast of Taiwan, a frequent but poorly understood mesoscale phenomenon that influences coastal weather during the Taiwan mei-yu season. Doppler radar and surface observations were gathered from a specially chosen period (11–15 May 1998) when the offshore convective lines were active off the southeastern coast of Taiwan. These observations were used to show the basic character, structure, and possible formative processes of offshore convective lines. The synoptic environment accompanying these events was found to be relatively undisturbed and featured uniformly prevailing southerly/south-southeasterly winds in the boundary layer with southwesterlies/westerlies aloft. Examination of radar data during the study period indicates that the lines generally occurred ∼10–30 km offshore and were characterized by an elongated narrow zone (∼5–10 km wide) of heavy precipitation. The lines were oriented roughly parallel to the coastline and generally did not move significantly. The intensity of the radar reflectivity associated with the lines exhibited a marked diurnal variation and was closely related to the coastal offshore flow developing at night. Detailed analyses of an event on 14–15 May 1998 further show the important physical link between the offshore flow and the development of the line. The offshore line was found to be located near and immediately ahead of the seaward extent of the offshore flow. Particularly, a very narrow zone (∼2 km) of low-level heavy precipitation (40–45 dBZ) coincided with regions of strong updrafts and convergence, where the prevailing southerly onshore flow encountered the cool offshore flow nearshore. This offshore flow–induced convergence, given a stable thermodynamic condition in the lowest ∼1 km in the inflow region, was a crucial low-level forcing that provided lifting to trigger moist deep convection in this case. The line’s precipitation tilt eastward was confined primarily to the warmer inflow side rather than feeding the offshore flow to the west of the line. No consistent upshear tilt of updrafts throughout the storm layer was observed, which is consistent with the presence of a strong westerly shear in the line’s environment. Both of these observations explain a relatively strong (weak) modification of low-level onshore (offshore) flow by precipitation. Additionally, a combination of surface and Doppler radar observations indicates that the leading edge of the offshore flow moved seaward very slowly at 0.7 m s−1 and possessed a frontal character with notable discontinuities in near-surface wind and temperature (instead of pressure and dewpoint temperature).

2005 ◽  
Vol 44 (3) ◽  
pp. 285-300 ◽  
Author(s):  
Tammy M. Weckwerth ◽  
Crystalyne R. Pettet ◽  
Frédéric Fabry ◽  
Shin Ju Park ◽  
Margaret A. LeMone ◽  
...  

Abstract This study will validate the S-band dual-polarization Doppler radar (S-Pol) radar refractivity retrieval using measurements from the International H2O Project conducted in the southern Great Plains in May–June 2002. The range of refractivity measurements during this project extended out to 40–60 km from the radar. Comparisons between the radar refractivity field and fixed and mobile mesonet refractivity values within the S-Pol refractivity domain show a strong correlation. Comparisons between the radar refractivity field and low-flying aircraft also show high correlations. Thus, the radar refractivity retrieval provides a good representation of low-level atmospheric refractivity. Numerous instruments that profile the temperature and moisture are also compared with the refractivity field. Radiosonde measurements, Atmospheric Emitted Radiance Interferometers, and a vertical-pointing Raman lidar show good agreement, especially at low levels. Under most daytime summertime conditions, radar refractivity measurements are representative of an ∼250-m-deep layer. Analyses are also performed on the utility of refractivity for short-term forecasting applications. It is found that the refractivity field may detect low-level boundaries prior to the more traditional radar reflectivity and Doppler velocity fields showing their existence. Data from two days on which convection initiated within S-Pol refractivity range suggest that the refractivity field may exhibit some potential utility in forecasting convection initiation. This study suggests that unprecedented advances in mapping near-surface water vapor and subsequent improvements in predicting convective storms could result from implementing the radar refractivity retrieval on the national network of operational radars.


2020 ◽  
Author(s):  
Hongli Li ◽  
Yang Hu ◽  
Zhimin Zhou

<p>During the Meiyu period, floods are prone to occur in the middle and lower reaches of the Yangtze River due to the highly concentrated and heavy rainfall, which caused huge life and economic losses. Based on numerical simulation by assimilating Doppler radar, radiosonde, and surface meteorological observations, the evolution mechanism for the initiation, development and decaying of a Meiyu frontal rainstorm that occurred from 4th to 5th July 2014 is analyzed in this study. Results show that the numerical experiment can well reproduce the temporal variability of heavy precipitation and successfully simulate accumulative precipitation and its evolution over the key rainstorm area. The simulated “rainbelt training” is consistent with observed “echo training” on both spatial structure and temporal evolution. The convective cells in the mesoscale convective belt propagated from southwest to northeast across the key rainstorm area, leading to large accumulative precipitation and rainstorm in this area. There existed convective instability in lower levels above the key rainstorm area, while strong ascending motion developed during period of heavy rainfall. Combined with abundant water vapor supply, the above condition was favorable for the formation and development of heavy rainfall. The Low level jet (LLJ) provided sufficient energy for the rainstorm system, and the low-level convergence intensified, which was an important reason for the maintenance of precipitation system and its eventual intensification to rainstorm. At its mature stage, the rainstorm system demonstrated vertically tilted structure with strong ascending motion in the key rainstorm area, which was favorable for the occurrence of heavy rainfall. In the decaying stage, unstable energy decreased, and the rainstorm no longer had sufficient energy to sustain. The rapid weakening of LLJ resulted in smaller energy supply to the convective system, and the stratification tended to be stable in the middle and lower levels. The ascending motion weakened correspondingly, which made it hard for the convective system to maintain.</p>


2009 ◽  
Vol 24 (4) ◽  
pp. 1009-1031 ◽  
Author(s):  
Maximiliano Viale ◽  
Federico A. Norte

Abstract The most intense orographic precipitation event over the subtropical central Andes (36°–30°S) during winter 2005 was examined using observational data and a regional model simulation. The Eta-Programa Regional de Meteorología (PRM) model forecast was evaluated and used to explore the airflow structure that generated this heavy precipitation event, with a focus on orographic influences. Even though the model did not realistically reproduce any near-surface variables, nor the precipitation shadow in the leeside lowlands, its reliable forecast of heavy precipitation over the windward side and the wind fields suggests that it can be used as a valuable forecasting tool for such events in the region. The synoptic flow of the 26–29 August 2005 storm responded to a well-defined dipole from low to upper levels with anomalous low (high) geopotential heights at midlatitudes (subtropical) latitudes located off the southeast Pacific coast, resulting in a large meridional geopotential height gradient that drove a strong anomalous cross-barrier flow. Precipitation enhancement in the Andes was observed during the entire event; however, the highest rates were in the prefrontal sector under the low-level stable stratification and cross-barrier winds exceeding 2.5 standard deviations (σ) from the climatological monthly mean. The combination of strong cross-mountain winds with the stable stratification in the air mass of a frontal system, impinging on the high Andes range, appears to be the major factor in determining the flow structure that produced the pattern of precipitation enhancement, with uplift maximized near mountaintops and low-level blocking upwindleading to the formation of a low-level along-barrier jet. Additionally, only the upstream wind anomalies for the 15 heaviest events over a 10-yr (1967–76) period were investigated. They exhibited strong anomalous northwesterly winds for 14 of the 15 events, whereas for the remaining event there were no available observations to evaluate. Thus, these anomalies may also be exploited for forecasting capabilities.


2013 ◽  
Vol 141 (2) ◽  
pp. 625-648 ◽  
Author(s):  
Robin L. Tanamachi ◽  
Louis J. Wicker ◽  
David C. Dowell ◽  
Howard B. Bluestein ◽  
Daniel T. Dawson ◽  
...  

Abstract Mobile Doppler radar data, along with observations from a nearby Weather Surveillance Radar-1988 Doppler (WSR-88D), are assimilated with an ensemble Kalman filter (EnKF) technique into a nonhydrostatic, compressible numerical weather prediction model to analyze the evolution of the 4 May 2007 Greensburg, Kansas, tornadic supercell. The storm is simulated via assimilation of reflectivity and velocity data in an initially horizontally homogeneous environment whose parameters are believed to be a close approximation to those of the Greensburg supercell inflow sector. Experiments are conducted to test analysis sensitivity to mobile radar data availability and to the mean environmental near-surface wind profile, which was changing rapidly during the simulation period. In all experiments, a supercell with similar location and evolution to the observed storm is analyzed, but the simulated storm’s characteristics differ markedly. The assimilation of mobile Doppler radar data has a much greater impact on the resulting analyses, particularly at low altitudes (≤2 km), than modifications to the near-surface environmental wind profile. Differences in the analyzed updrafts, vortices, cold pool structure, rear-flank gust front structure, and observation-space diagnostics are documented. An analyzed vortex corresponding to the enhanced Fujita scale 5 (EF-5) Greensburg tornado is stronger and deeper in experiments in which mobile (higher resolution) Doppler radar data are included in the assimilation. This difference is linked to stronger analyzed horizontal convergence, which in turn is associated with increased stretching of vertical vorticity. Changing the near-surface wind profile appears to impact primarily the updraft strength, availability of streamwise vorticity for tilting into the vertical, and low-level vortex strength and longevity.


SOLA ◽  
2019 ◽  
Vol 15 (0) ◽  
pp. 234-237
Author(s):  
Kenichi Kusunoki ◽  
Ken-ichiro Arai ◽  
Hanako Y. Inoue ◽  
Chusei Fujiwara

2015 ◽  
Vol 96 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Fuqing Zhang ◽  
Yonghui Weng

Abstract Performance in the prediction of hurricane intensity and associated hazards has been evaluated for a newly developed convection-permitting forecast system that uses ensemble data assimilation techniques to ingest high-resolution airborne radar observations from the inner core. This system performed well for three of the ten costliest Atlantic hurricanes: Ike (2008), Irene (2011), and Sandy (2012). Four to five days before these storms made landfall, the system produced good deterministic and probabilistic forecasts of not only track and intensity, but also of the spatial distributions of surface wind and rainfall. Averaged over all 102 applicable cases that have inner-core airborne Doppler radar observations during 2008–2012, the system reduced the day-2-to-day-4 intensity forecast errors by 25%–28% compared to the corresponding National Hurricane Center’s official forecasts (which have seen little or no decrease in intensity forecast errors over the past two decades). Empowered by sufficient computing resources, advances in both deterministic and probabilistic hurricane prediction will enable emergency management officials, the private sector, and the general public to make more informed decisions that minimize the losses of life and property.


2013 ◽  
Vol 31 (4) ◽  
pp. 625-632 ◽  
Author(s):  
O. Alizadeh Choobari ◽  
P. Zawar-Reza ◽  
A. Sturman

Abstract. Modification of the intensity of a low level jet (LLJ) and near-surface wind speed by mineral dust is important as it has implications for dust emission and its long-range transport. Using the Weather Research and Forecasting with Chemistry (WRF/Chem) regional model, it is shown that direct radiative forcing by mineral dust reduces temperature in the lower atmosphere, but increases it in the layers aloft. The surface cooling is shown to be associated with a reduction of turbulent kinetic energy (TKE) and hence vertical mixing of horizontal momentum. Changes in the vertical profile of temperature over the regions that are under the influence of a LLJ are shown to result in an intensification of the LLJ and near-surface wind speed, but a decrease of winds aloft. These changes in the wind speed profile differ from results of previous research which suggested a decrease of wind speed in the lower atmosphere and its increase in the upper boundary layer.


2010 ◽  
Vol 138 (8) ◽  
pp. 3207-3223 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Wei-Ting Fang ◽  
Russell L. Elsberry

Abstract A tropical cyclone (TC) size parameter, which is defined here as the radius of 15 m s−1 near-surface wind speed (R15), is calculated for 145 TCs in the western North Pacific during 2000–05 based on QuikSCAT oceanic winds. For the 73 TCs that intensified to typhoon intensity during their lifetimes, the 33% and 67% respective percentiles of R15 at tropical storm intensity and at typhoon intensity are used to categorize small, medium, and large TCs. Whereas many of the small TCs form from an easterly wave synoptic pattern, the monsoon-related formation patterns are favorable for forming medium to large TCs. Most of these 73 TCs stay in the same size category during intensification, which implies specific physical mechanisms for maintaining TC size in the basin. The 18 persistently large TCs from the tropical storm to the typhoon stage mostly have northwestward or north-northwestward tracks, while the 16 persistently small TCs either move westward–northwestward in lower latitudes or develop at higher latitudes with various track types. For the large TCs, strong low-level southwesterly winds exist in the outer core region south of the TC center throughout the intensification period. The small TCs are more influenced by the subtropical high during intensification. The conclusion is that it is the low-level environment that determines the difference between large and small size storms during the early intensification period in the western North Pacific.


2020 ◽  
Author(s):  
Nicolas Blanchard ◽  
Florian Pantillon ◽  
Jean-Pierre Chaboureau ◽  
Julien Delanoë

Abstract. Warm conveyor belts (WCBs) are warm, moist airstreams of extratropical cyclones leading to widespread clouds and heavy precipitation, where associated diabatic processes can influence midlatitude dynamics. Although WCBs are traditionally seen as continuous slantwise ascents, recent studies have emphasized the presence of embedded convection and the production of mesoscale bands of negative potential vorticity (PV), the impact of which on large-scale dynamics is still debated. Here, detailed cloud and wind measurements obtained with airborne Doppler radar provide unique information on the WCB of the Stalactite cyclone on 2 October 2016 during the North Atlantic Waveguide and Downstream Impact Experiment. The measurements are complemented by a convection-permitting simulation, enabling online Lagrangian trajectories and 3-D objects clustering. The simulation reproduces well the mesoscale structure of the cyclone shown by satellite infrared observations, while the location of trajectories rising by 150 hPa during a relatively short 12 h window matches the WCB region expected from high clouds. One third of those trajectories, categorized as fast ascents, further reach a 100 hPa (2h)−1 threshold during their ascent and follow the cyclonic flow mainly at lower levels. In agreement with radar observations, convective updrafts are found in the WCB and are characterized by moderate reflectivity values up to 20 dBz and vertical velocities above 0.3 m s−1. Updraft objects and fast ascents consistently show three main types of convection in the WCB: (i) frontal convection along the surface cold front and the western edge of the low-level jet; (ii) banded convection at about 2 km altitude along the eastern edge of the low-level jet; (iii) mid-level convection below the upper-level jet. Mesoscale PV dipoles with strong positive and negative values are located in the vicinity of convective ascents and appear to accelerate both low-level and upper-level jets. Both convective ascents and negative PV organize into structures with coherent shape, location and evolution, thus suggesting a dynamical linkage. The results show that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Daniel P. Betten ◽  
Michael I. Biggerstaff ◽  
Conrad L. Ziegler

Nearly continuous wind retrievals every three minutes for an unprecedented 90-minute period were constructed during multiple mesocyclone cycles in a tornadic high-precipitation supercell. Asymptotic contraction rate analysis revealed the relationship between the primary and secondary rear-flank gust fronts (RFGF and SRFGFs) and the rear-flank downdraft (RFD) and occlusion downdrafts. This is thought to be the first radar-based analysis where the relationship between the near-surface gust fronts and their parent downdrafts has been explored for sequential mesocyclones. Changes in the SRFGFs were associated with surges in the RFD. During part of the mesocyclone lifecycle, the SRFGF produced a band of low-level convergence and associated deep updraft along the southwestern side of the hook echo region that ingested the RFD outflow and limited both entrainment into the RFD and reinforcement of low-level convergence along the leading edge of the primary RFGF. The second mesocyclone intensified from stretching in an occlusion updraft rather than in the primary updraft. This low-level mesocyclone remained well separated from the updraft shear region vorticity that was associated with a more traditional midlevel mesocyclone. However, the third mesocyclone initiated in the vorticity-rich region of the primary updraft zone and was amplified by stretching in the primary updraft.


Sign in / Sign up

Export Citation Format

Share Document