Morphologic Effects of Glycerol and Urea on Cochlear Tissues of the Chinchilla

1988 ◽  
Vol 97 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Charles G. Wright ◽  
David H. Lee ◽  
William L. Meyerhoff ◽  
Peter S. Roland

Glycerol and urea are used as test agents in confirming the diagnosis of endolymphatic hydrops. Although both substances act as osmotic diuretics, recent evidence suggests that they may have differing physiologic effects on the inner ear. This study was designed to compare the morphologic effects of urea and glycerol on cochlear tissues, using the chinchilla as an experimental model. Animals were given subcutaneous injections of glycerol (2 g/kg) or urea (1.2 g/kg) over periods of 3 hours, 4 days, or 1 week. Both agents were found to produce ultrastructural changes, including spiral ligament vacuolization, intracellular alterations of the stria vascularis, and increased numbers of Hensen's bodies in outer hair cells. These alterations appeared indicative of metabolic stress, but not toxicity. The morphologic findings provided no evidence that glycerol and urea affect the inner ear by fundamentally different mechanisms of action.

1989 ◽  
Vol 37 (12) ◽  
pp. 1787-1797 ◽  
Author(s):  
B A Schulte ◽  
J C Adams

Cells containing immunoreactive vimentin-type intermediate filaments (IF) were identified in paraffin sections and whole-mount preparations of the gerbil inner ear. Most connective tissue cells showed positive immunostaining, although one unusual class of stromal cell lacked vimentin. Several different types of epithelial cells contained high levels of vimentin. In the cochlea, Deiters' cells, inner phalangeal cells, Boettcher's cells, some outer sulcus cells, and the intermediate cells of the stria vascularis showed strong immunoreactivity. Strial basal cells exhibited weaker and less consistent staining. Neither inner nor outer hair cells were stained. In the vestibular system, hair cells with a morphology and location more characteristic of type I than of type II cells showed strong immunostaining for vimentin. Supporting cells in vestibular neurosensory epithelium stained with less intensity. These results were surprising because epithelial cells in vivo only rarely express vimentin-type IF. Although the functional significance of vimentin remains to be established, its presence in some but not other highly specialized cell types provides an excellent marker for investigating the lineage and morphogenesis of the complex inner ear tissues.


2018 ◽  
Vol 159 (3) ◽  
pp. 526-534 ◽  
Author(s):  
Reuven Ishai ◽  
Renata M. Knoll ◽  
Jenny X. Chen ◽  
Kevin Wong ◽  
Katherine L. Reinshagen ◽  
...  

Objective Hearing loss following temporal bone (TB) fracture may result from direct transection of the middle and inner ear. The pathophysiology of hearing loss due to head injury without TB fracture, however, is not well understood. Few reports describe otopathologic findings. Herein, we investigate the pathologic findings of patients who sustained a head injury without evidence of a TB fracture. Study Design Otopathology study. Setting Otopathology laboratory. Subjects Subjects with a history of head injury without TB fracture. Methods The TBs of patients with head injury were evaluated by light microscopy. Inner ear anatomy was evaluated, including counts of spiral ganglion cells (SGCs), hair cells, pillar cells, atrophy of the stria vascularis, and the presence of endolymphatic hydrops. SGC counts were compared with those of historical age-matched controls. Results All cases (N = 6 TBs) had evidence of inner ear pathology. Of the 6 cases, 2 (33%) had severe loss of hair cells in all 3 turns of the cochlea, and 4 (67%) cases demonstrated moderate to severe loss at the basal turn of the cochlea. Four cases had scattered atrophy of the stria vascularis, and 3 (50%) had cochlear hydrops. The number of total SGCs was decreased, with an average 53% loss (range, 25%-79%) as compared with controls. The SGC count loss was evenly distributed along Rosenthal’s canal. Conclusions Patients with a history of head injury without TB fracture demonstrate inner ear pathology. Further studies are necessary to determine if otopathology findings are directly attributable to trauma.


1995 ◽  
Vol 104 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Masashi Suzuki ◽  
Jeffrey P. Harris

This study was designed to investigate the expression of intercellular adhesion molecule-1 (ICAM-1) on the spiral modiolar vein (SMV) with its collecting venules (CVs) and the venules of the endolymphatic sac during inner ear inflammation. These data will further elucidate the role of adhesion molecules in extravasation of inflammatory cells from blood vessels during an inner ear immune response. Labyrinthitis was induced in rats by inoculation of keyhole limpet hemocyanin into the scala tympani of animals who had been systemically sensitized to it. Expression of ICAM-1 was examined with a mouse monoclonal antibody to rat ICAM-1 by immunohistochemistry. ICAM-1 was found weakly on the epithelium of SMVs and CVs as early as 6 hours postchallenge, reaching a maximum by day 2 and then fading away gradually. The maximum influx of immunocompetent cells into the cochlea was seen between days 3 and 7. Staining for ICAM-1 was observed on the epithelium of the endolymphatic sac and perisaccular region at 12 and 24 hours, respectively, and this was associated with infiltration of cells into these areas 3 days postchallenge. By day 28, the inner ear had developed endolymphatic hydrops, but at this time it showed almost no significant staining with anti-ICAM-1. The molecule was also expressed in the mesothelium of perilymph, the perineurium of cochlear nerves, the spiral ligament, and the basal cells of the stria vascularis following immunization. Our data provide evidence that endothelial cells of the SMV and its CVs, as well as other inner ear sites, have the potential to express ICAM-1. This expression precedes the influx of immune cells; therefore, it is possible that this ligand plays a pivotal role in the onset of inflammation in the inner ear. This study also confirmed that the immune response results in endolymphatic hydrops as a long-term consequence.


2015 ◽  
Vol 20 (4) ◽  
pp. 267-272 ◽  
Author(s):  
Joseph B. Nadol Jr ◽  
Jan D. Marshall ◽  
Roderick T. Bronson

Alström's syndrome is an autosomal recessive syndromic genetic disorder caused by mutations in the ALMS1 gene. Sensorineural hearing loss occurs in greater than 85% of patients. Histopathology of the inner ear abnormalities in the human has not previously been fully described. Histopathology of the inner ear in Alström's syndrome is presented in 2 genetically confirmed cases. The predominant histopathologic correlates of the sensorineural loss were degeneration of the organ of Corti, both inner and outer hair cells, degeneration of spiral ganglion cells, and atrophy of the stria vascularis and spiral ligament.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4551-4560 ◽  
Author(s):  
J.L. Zheng ◽  
J. Shou ◽  
F. Guillemot ◽  
R. Kageyama ◽  
W.Q. Gao

Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.


1983 ◽  
Vol 92 (1_suppl) ◽  
pp. 3-12 ◽  
Author(s):  
Tomonori Takasaka ◽  
Hideich Shinkawa ◽  
Kozo Watanuki ◽  
Sho Hashimoto ◽  
Kazutomo Kawamoto

The technique and some preliminary results of the application of high-voltage electron microscopy (HVEM) to the study of inner ear morphology in the guinea pig are reported in this paper. The main advantage of HVEM is that sharp images of thicker specimens can be obtained because of the greater penetrating power of high energy electrons. The optimum thickness of the sections examined with an accelerating voltage of 1,000 kV was found to be between 500 to 800 nm. The sections below 500 nm in thickness often had insufficient contrast, while those above 800 nm were rather difficult to interpret due to overlap of images of the organelles. The whole structure of the sensory hairs from the tip to the rootlet was more frequently observed in the 800-nm thick sections. Thus the fine details of the hair attachment to the tectorial membrane as well as the hair rootlet extension into the cuticular plate could be thoroughly studied in the HVEM. In specimens fixed in aldehyde containing 2% tannic acid, the attachment of the tips of the outer hair cell stereocilia to the tectorial membrane was observed. For the inner hair cells, however, the tips of the hairs were separated from the undersurface of the tectorial membrane. The majority of the rootlets of the outer hair cells terminated at the midportion of the cuticular plate, while most of the inner hair cell rootlets traversed the entire width of the cuticular plate and extended into the apical cytoplasm. These differences in ultrastructural appearance may indicate that the two kinds of hair cells play different roles in the acoustic transduction process. The three-dimensional arrangement of the nerve endings on the hair cells was also studied by the serial thick-sectioning technique in the HVEM. In general, an entire arrangement of the nerve endings was almost completely cut in less than ten 800-nm thick sections instead of the 50- to 100-ultrathin (ie, less than 100 nm) conventional sections for transmission electron microscopy. The present study confirms an earlier report that the first row outer hair cells in the third cochlear turn are innervated by nearly equal numbers of efferent and afferent endings, the average number being nine.


1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3381-3391 ◽  
Author(s):  
T. Schimmang ◽  
L. Minichiello ◽  
E. Vazquez ◽  
I. San Jose ◽  
F. Giraldez ◽  
...  

The trkB and trkC genes are expressed during the formation of the vestibular and auditory system. To elucidate the function of trkB and trkC during this process, we have analysed mice carrying a germline mutation in the tyrosine kinase catalytic domain of these genes. Neuroanatomical analysis of homozygous mutant mice revealed neuronal deficiencies in the vestibular and cochlear ganglia. In trkB (−/−) animals vestibular neurons and a subset of cochlear neurons responsible for the innervation of outer hair cells were drastically reduced. The peripheral targets of the respective neurons showed severe innervation defects. A comparative analysis of ganglia from trkC (−/−) mutants revealed a moderate reduction of vestibular neurons and a specific loss of cochlear neurons innervating inner hair cells. No nerve fibres were detected in the sensory epithelium containing inner hair cells. A developmental study of trkB (−/−) and trkC (−/−) mice showed that some vestibular and cochlear fibres initially reached their peripheral targets but failed to maintain innervation and degenerated. TrkB and TrkC receptors are therefore required for the survival of specific neuronal populations and the maintenance of target innervation in the peripheral sensory system of the inner ear.


2020 ◽  
Vol 319 (3) ◽  
pp. C569-C578
Author(s):  
Bei Chen ◽  
Hongen Xu ◽  
Yanfang Mi ◽  
Wei Jiang ◽  
Dan Guo ◽  
...  

Mutations in connexin 30 (Cx30) are known to cause severe congenital hearing impairment; however, the mechanism by which Cx30 mediates homeostasis of endocochlear gap junctions is unclear. We used a gene deletion mouse model to explore the mechanisms of Cx30 in preventing hearing loss. Our results suggest that despite severe loss of the auditory brain-stem response and endocochlear potential at postnatal day 18, Cx30−/− mice only show sporadic loss of the outer hair cells. This inconsistency in the time course and severity of hearing and hair cell losses in Cx30−/− mice might be explained, in part, by an increase in reactive oxygen species generation beginning at postnatal day 10. The expression of oxidative stress genes was increased in Cx30−/− mice in the stria vascularis, spiral ligament, and organ of Corti. Furthermore, Cx30 deficiency caused mitochondrial dysfunction at postnatal day 18, as assessed by decreased ATP levels and decreased expression of mitochondrial complex I proteins, especially in the stria vascularis. Proteomic analysis further identified 444 proteins that were dysregulated in Cx30−/− mice, including several that are involved in mitochondria electron transport, ATP synthesis, or ion transport. Additionally, proapoptotic proteins, including Bax, Bad, and caspase-3, were upregulated at postnatal day 18, providing a molecular basis to explain the loss of hearing that occurs before hair cell loss. Therefore, our results are consistent with an environment of oxidative stress and mitochondrial damage in the cochlea of Cx30−/− mice that is coincident with hearing loss but precedes hair cell loss.


Sign in / Sign up

Export Citation Format

Share Document