Optimizing Rice Near-Infrared Models Using Fractional Order Savitzky–Golay Derivation (FOSGD) Combined with Competitive Adaptive Reweighted Sampling (CARS)

2020 ◽  
Vol 74 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Zhenzhen Xia ◽  
Jie Yang ◽  
Jing Wang ◽  
Shengpeng Wang ◽  
Yan Liu

Developing a rapid and stable method for analyzing the quality parameters of rice is important. Near-infrared (NIR) spectroscopy combined with chemometric techniques have been used to predict the critical contents of rice and shown its accuracy and stability. To further improve the predictive ability, we combine the derivative method of fractional order Savitzky–Golay derivation (FOSGD) with the wavelength selection method of competitive adaptive reweighted sampling (CARS). Compared with the traditional integer order Savitzky–Golay derivation (IOSGD), the FOSGD could improve the resolution ratio of the raw spectra more effectively. The wavelength selection method, CARS, could further extract the informative variables from the processed spectra. Four key contents of rice samples, including moisture, amylose, chalkiness degree, and gel consistency, were utilized to validate this method. The prediction results indicated that partial least squares (PLS) models optimized with FOSGD-CARS own higher accuracy and stability with smaller the root mean squared error of cross validations (RMSECVs) and root mean squared error of predictions (RMSEPs). The proposed method is convenient and provides a practical alternative for rice analysis.

2020 ◽  
Vol 28 (5-6) ◽  
pp. 255-266 ◽  
Author(s):  
Elise A Kho ◽  
Jill N Fernandes ◽  
Andrew C Kotze ◽  
Glen P Fox ◽  
Maggy Lord ◽  
...  

Heavy infestations of the blood-sucking gastrointestinal nematodes, Haemonchus contortus can cause severe anaemia in sheep and leakage of blood into the faeces, leading to morbidity and mortality. Early and accurate diagnosis of infections is critical for timely treatment of sheep, minimizing production and sheep welfare impacts. In pursuit of a quick and easy measure of H. contortus infections, we investigated the use of portable visible near infrared spectrometers for detecting the presence of haemoglobin in sheep faeces as an indicator of H. contortus infection. Calibration models built within the 400–600 nm region by partial least square regression resulted in acceptable prediction accuracies (r 2 p > 0.70 and root mean squared error of prediction <2.64 µg Hb mg−1 faeces) for haemoglobin quantification using two spectrometers. The prediction results from support vector machine regression further improved the prediction of haemoglobin in moist sheep faeces (r 2 p > 0.87 and root mean squared error of prediction <2.00 µg haemoglobin mg−1 faeces). Based on a threshold for anthelmintic treatment of 3 µg Hb mg−1 faeces, both the partial least square and support vector machine models showed high sensitivity (89%) and high specificity (>77%). The specificity of the prediction model for detecting haemoglobin in sheep faeces may be improved by adding more variations in faecal composition into the calibration model. Our success in detecting haemoglobin in sheep faeces, following minimal sample preparation, suggests that with further development, vis–near infrared spectroscopy can provide a sensitive and convenient method for on-farm diagnosis of H. contortus infections.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6892
Author(s):  
Isabel Revilla ◽  
Ana M. Vivar-Quintana ◽  
María Inmaculada González-Martín ◽  
Miriam Hernández-Jiménez ◽  
Iván Martínez-Martín ◽  
...  

For Protected Geographical Indication (PGI)-labeled products, such as the dry-cured beef meat “cecina de León”, a sensory analysis is compulsory. However, this is a complex and time-consuming process. This study explores the viability of using near infrared spectroscopy (NIRS) together with artificial neural networks (ANN) for predicting sensory attributes. Spectra of 50 samples of cecina were recorded and 451 reflectance data were obtained. A feedforward multilayer perceptron ANN with 451 neurons in the input layer, a number of neurons varying between 1 and 30 in the hidden layer, and a single neuron in the output layer were optimized for each sensory parameter. The regression coefficient R squared (RSQ > 0.8 except for odor intensity) and mean squared error of prediction (MSEP) values obtained when comparing predicted and reference values showed that it is possible to predict accurately 23 out of 24 sensory parameters. Although only 3 sensory parameters showed significant differences between PGI and non-PGI samples, the optimized ANN architecture applied to NIR spectra achieved the correct classification of the 100% of the samples while the residual mean squares method (RMS-X) allowed 100% of non-PGI samples to be distinguished.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ning Wang ◽  
Xingxiang Zhang ◽  
Zhuo Yu ◽  
Guodong Li ◽  
Bin Zhou

This paper developed a rapid and nondestructive method for quantitative analysis of a cheaper adulterant (wheat flour) in oat flour by NIR spectroscopy and chemometrics. Reflectance FT-NIR spectra in the range of 4000 to 12000 cm−1of 300 oat flour objects adulterated with wheat flour were measured. The doping levels of wheat flour ranged from 5% to 50% (w/w). To ensure the generalization performance of the method, both the oat and the wheat flour samples were collected from different producing areas and an incomplete unbalanced randomized block (IURB) design was performed to include the significant variations that may be encountered in future samples. Partial least squares regression (PLSR) was used to develop calibration models for predicting the levels of wheat flour. Different preprocessing methods including smoothing, taking second-order derivative (D2), and standard normal variate (SNV) transformation were investigated to improve the model accuracy of PLS. The root mean squared error of Monte Carlo cross-validation (RMSEMCCV) and root mean squared error of prediction (RMSEP) were 1.921 and 1.975 (%, w/w) by D2-PLS, respectively. The results indicate that NIR and chemometrics can provide a rapid method for quantitative analysis of wheat flour in oat flour.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Jiayue Wang ◽  
Tongtong Li ◽  
Hailong Yang ◽  
Tian Hu ◽  
Lei Nie ◽  
...  

At present, Tradition Chinese Medicine (TCM) industry in China is in the stage from the empirical development to industrial production. Near infrared (NIR) spectroscopy has been widely used in the quality control of TCM’s modernization with its characteristics including rapidness, nondestruction, simplicity, economy, and so on. In this study, as one type of a portable micro NIR spectrometer, Micro NIR 1700 was used to establish the qualitative models for identification of geographical region and authenticity of Radix codonopsis based on discriminant analysis (DA) method. Both of the DA models had better predictive ability with 100% accuracy. In addition, a method for rapid quantitative analysis of polysaccharide in Radix codonopsis was also developed based on Micro NIR 1700 spectrometer with partial least-squares (PLS) algorithm. In the PLS calibration model, the NIR spectra of samples were pretreated with different preprocessing methods and the spectral region was selected with different variable selection methods as well. The performance of the final PLS model was evaluated according to correlation coefficient of calibration ([Formula: see text]), correlation coefficient of prediction ([Formula: see text]), root mean squared error of cross validation (RMSECV), and root mean squared of prediction (RMSEP). The values of [Formula: see text], [Formula: see text], RMSECV, and RMSEP were 0.9775, 0.9602, 2.496, and 2.734[Formula: see text]g/mL, respectively. This work demonstrated that micro infrared spectrometer could be more convenient and rapid for quality control of Radix codonopsis, and the presented models would be a useful reference for quality control of other similar raw materials of TCM.


2012 ◽  
Vol 61 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Ádám Csorba ◽  
Vince Láng ◽  
László Fenyvesi ◽  
Erika Michéli

Napjainkban egyre nagyobb igény mutatkozik olyan technológiák és módszerek kidolgozására és alkalmazására, melyek lehetővé teszik a gyors, költséghatékony és környezetbarát talajadat-felvételezést és kiértékelést. Ezeknek az igényeknek felel meg a reflektancia spektroszkópia, mely az elektromágneses spektrum látható (VIS) és közeli infravörös (NIR) tartományában (350–2500 nm) végzett reflektancia-mérésekre épül. Figyelembe véve, hogy a talajokról felvett reflektancia spektrum információban nagyon gazdag, és a vizsgált tartományban számos talajalkotó rendelkezik karakterisztikus spektrális „ujjlenyomattal”, egyetlen görbéből lehetővé válik nagyszámú, kulcsfontosságú talajparaméter egyidejű meghatározása. Dolgozatunkban, a reflektancia spektroszkópia alapjaira helyezett, a talajok ösz-szetételének meghatározását célzó módszertani fejlesztés első lépéseit mutatjuk be. Munkánk során talajok szervesszén- és CaCO3-tartalmának megbecslését lehetővé tévő többváltozós matematikai-statisztikai módszerekre (részleges legkisebb négyzetek módszere, partial least squares regression – PLSR) épülő prediktív modellek létrehozását és tesztelését végeztük el. A létrehozott modellek tesztelése során megállapítottuk, hogy az eljárás mindkét talajparaméter esetében magas R2értéket [R2(szerves szén) = 0,815; R2(CaCO3) = 0,907] adott. A becslés pontosságát jelző közepes négyzetes eltérés (root mean squared error – RMSE) érték mindkét paraméter esetében közepesnek mondható [RMSE (szerves szén) = 0,467; RMSE (CaCO3) = 3,508], mely a reflektancia mérési előírások standardizálásával jelentősen javítható. Vizsgálataink alapján arra a következtetésre jutottunk, hogy a reflektancia spektroszkópia és a többváltozós kemometriai eljárások együttes alkalmazásával, gyors és költséghatékony adatfelvételezési és -értékelési módszerhez juthatunk.


2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

&lt;p&gt;Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.&lt;/p&gt;&lt;p&gt;The study is performed in Mediterranean Croatia (44&amp;#176; 05&amp;#8217; N; 15&amp;#176; 22&amp;#8217; E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed &lt;em&gt;Quercus ssp.&lt;/em&gt; and &lt;em&gt;Juniperus ssp.&lt;/em&gt; forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22&lt;sup&gt;nd&lt;/sup&gt; 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31&lt;sup&gt;st&lt;/sup&gt; and September 5&lt;sup&gt;th &lt;/sup&gt;2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE&lt;sub&gt;p&lt;/sub&gt;) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.&lt;/p&gt;&lt;p&gt;The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE&lt;sub&gt;p &lt;/sub&gt;(Spectroscopy dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 1.91; Sentinel-2 dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; remote sensing, soil spectroscopy, wildfires, soil organic matter&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment: &lt;/strong&gt;This work was supported by the Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO). Aleksandra Per&amp;#269;in is acknowledged for her cooperation during the laboratory work.&lt;/p&gt;


2021 ◽  
pp. 1-21
Author(s):  
Elsa Arrua-Duarte ◽  
Marta Migoya-Borja ◽  
Igor Barahona ◽  
Lena C. Quilty ◽  
Sakina J. Rizvi ◽  
...  

Abstract Objective: The Dimensional Anhedonia Rating Scale (DARS) is a novel questionnaire to assess anhedonia of recent validation. In this work we aim to study the equivalence between the traditional paper-and-pencil and the digital format of DARS. Methods: 69 patients filled the DARS in a paper-based and digital versions. We assessed differences between formats (Wilcoxon test), validity of the scales (Kappa and Intraclass Correlation Coefficients), and reliability (Cronbach’s alpha and Guttman’s coefficient). We calculated the Comparative Fit Index and the Root Mean Squared Error associated with the proposed one-factor structure. Results: Total scores were higher for paper-based format. Significant differences between both formats were found for three items. The weighted Kappa coefficient was approximately 0.40 for most of the items. Internal consistency was greater than 0.94, and the Intraclass Correlation Coefficient for the digital version was 0.95 and 0.94 for the paper-and-pencil version (F= 16.7, p < 0.001). Comparative Adjustment Index was 0.97 for the digital DARS and 0.97 for the paper-and-pencil DARS, and Root Mean Squared Error was 0.11 for the digital DARS and 0.10 for the paper-and-pencil DARS. Conclusion: The digital DARS is consistent in many respects to the paper-and-pencil questionnaire, but equivalence with this format cannot be assumed without caution.


2021 ◽  
Author(s):  
Ma Te ◽  
Tetsuya Inagaki ◽  
Masato Yoshida ◽  
Mayumi Ichino ◽  
Satoru Tsuchikawa

Abstract Wood has various mechanical properties, so stiffness evaluation is critical for quality management. Using conventional strain gauges constantly is high cost, also challenging to measure precious wood materials due to the use of strong adhesive. This study demonstrates the correlation between light scattering changes inside the wood cell walls and tensile strain. A multifiber-based visible-near-infrared (Vis–NIR) spatially resolved spectroscopy (SRS) system was designed to rapidly and conventiently acquire such light scattering changes. For the preliminary experiment, samples with different thicknesses were measured to evaluate the influence of thickness. The differences in Vis–NIR SRS spectral data diminish with an increase in sample thickness, which suggests that the SRS method can successfully measure the whole strain (i.e., surface and inside) of wood samples. Then, for the primary experiment, 18 wood samples with the same thickness (2 mm) were tested to construct a strain calibration model. The prediction accuracy was characterized by a determination coefficient (R2) of 0.86 with a root mean squared error (RMSE) of 297.89 με for five-fold cross-validation; for test validation, The prediction accuracy was characterized by an R2 of 0.82 and an RMSE of 345.44 με.


2018 ◽  
Vol 4 (1) ◽  
pp. 24
Author(s):  
Imam Halimi ◽  
Wahyu Andhyka Kusuma

Investasi saham merupakan hal yang tidak asing didengar maupun dilakukan. Ada berbagai macam saham di Indonesia, salah satunya adalah Indeks Harga Saham Gabungan (IHSG) atau dalam bahasa inggris disebut Indonesia Composite Index, ICI, atau IDX Composite. IHSG merupakan parameter penting yang dipertimbangkan pada saat akan melakukan investasi mengingat IHSG adalah saham gabungan. Penelitian ini bertujuan memprediksi pergerakan IHSG dengan teknik data mining menggunakan algoritma neural network dan dibandingkan dengan algoritma linear regression, yang dapat dijadikan acuan investor saat akan melakukan investasi. Hasil dari penelitian ini berupa nilai Root Mean Squared Error (RMSE) serta label tambahan angka hasil prediksi yang didapatkan setelah dilakukan validasi menggunakan sliding windows validation dengan hasil paling baik yaitu pada pengujian yang menggunakan algoritma neural network yang menggunakan windowing yaitu sebesar 37,786 dan pada pengujian yang tidak menggunakan windowing sebesar 13,597 dan untuk pengujian algoritma linear regression yang menggunakan windowing yaitu sebesar 35,026 dan pengujian yang tidak menggunakan windowing sebesar 12,657. Setelah dilakukan pengujian T-Test menunjukan bahwa pengujian menggunakan neural network yang dibandingkan dengan linear regression memiliki hasil yang tidak signifikan dengan nilai T-Test untuk pengujian dengan windowing dan tanpa windowing hasilnya sama, yaitu sebesar 1,000.


2014 ◽  
Vol 590 ◽  
pp. 321-325
Author(s):  
Li Chen ◽  
Chang Huan Kou ◽  
Kuan Ting Chen ◽  
Shih Wei Ma

A two-run genetic programming (GP) is proposed to estimate the slump flow of high-performance concrete (HPC) using several significant concrete ingredients in this study. GP optimizes functions and their associated coefficients simultaneously and is suitable to automatically discover relationships between nonlinear systems. Basic-GP usually suffers from premature convergence, which cannot acquire satisfying solutions and show satisfied performance only on low dimensional problems. Therefore it was improved by an automatically incremental procedure to improve the search ability and avoid local optimum. The results demonstrated that two-run GP generates an accurate formula through and has 7.5 % improvement on root mean squared error (RMSE) for predicting the slump flow of HPC than Basic-GP.


Sign in / Sign up

Export Citation Format

Share Document