scholarly journals Maturation of Mitochondrial and other Isoenzymes of Creatine Kinase in Skeletal Muscle of Preterm Born Infants

Author(s):  
J Smeitink ◽  
W Ruitenbeek ◽  
T v Lith ◽  
R Sengers ◽  
F Trijbels ◽  
...  

We studied pre- and postnatal changes in total creatine kinase (CK) activity, mitochondrial creatine kinase (Mi-CK) activity and immunochemical reactivity with anti-Mi-CK antibodies in skeletal muscle specimens from 12 infants, 10 of them preterm born, after a pregnancy varying between 28 and 40 weeks. Our results demonstrate that Mi-CK is present in fetal human quadriceps muscle and that the specific activity of Mi-CK increases during prenatal development from week 28 to 40 by a factor about two. Generally, adult levels have not been reached at birth, indicating a further postnatal increase of the activity of the enzyme. The Mi-CK protein content also increases during prenatal development. These results suggest that in human skeletal muscle the expression and accumulation of Mi-CK starts at mid-gestation, later than is known to occur for cytosolic CK.

2012 ◽  
Vol 590 (21) ◽  
pp. 5475-5486 ◽  
Author(s):  
Christopher G. R. Perry ◽  
Daniel A. Kane ◽  
Eric A. F. Herbst ◽  
Kazutaka Mukai ◽  
Daniel S. Lark ◽  
...  

Author(s):  
J Smeitink ◽  
R Wevers ◽  
J Hulshof ◽  
W Ruitenbeek ◽  
T v Lith ◽  
...  

Defects in the mitochondrial energy generating system in patients with a mitochondrial myopathy are known to be localized in various enzyme complexes involved in energy production. Such a defect may exist at the level of mitochondrial creatine kinase (Mi-CK). On that account we have developed a method for measurement of the enzyme activity in human skeletal muscle biopsy material (> 10 mg). Interfering creatine kinase isoenzymes are removed by anion exchange and affinity chromatography. The activity of Mi-CK in reference skeletal muscle homogenates amounts to 240±88 mU/mg protein (30±8·0 mU/mg wet weight).


2003 ◽  
Vol 13 (3) ◽  
pp. 294-302 ◽  
Author(s):  
Darren G. Burke ◽  
Philip D. Chilibeck ◽  
Gianni Parise ◽  
Mark A. Tarnopolsky ◽  
Darren G. Candow

α-lipoic acid has been found to enhance glucose uptake into skeletal muscle in animal models. Studies have also found that the co-ingestion of carbohydrate along with creatine increases muscle creatine uptake by a process related to insulin-stimulated glucose disposal. The purpose of this study was to determine the effect of α-lipoic acid on human skeletal muscle creatine uptake by directly measuring intramuscular concentrations of creatine, phosphocreatine, and ad-enosine triphosphate when creatine monohydrate was co-ingested with α-lipoic acid. Muscle biopsies were acquired from the vastus lateralis m. of 16 male subjects (18–32 y) before and after the experimental intervention. After the initial biopsy, subjects ingested 20 g · d−1 of creatine monohydrate, 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose, or 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose + 1000 mg · d−1 of α-lipoic acid for 5 days. Subjects refrained from exercise and consumed the same balanced diet for 7 days. Body weight increased by 2.1% following the nutritional intervention, with no differences between the groups. There was a significant increase in total creatine concentration following creatine supplementation, with the group ingesting α-lipoic acid showing a significantly greater increase (p < .05) in phosphocreatine (87.6 → 106.2 mmol · kg−1 dry mass [dm]) and total creatine (137.8 → 156.8 mmol · kg−1 dm). These findings indicate that co-ingestion of α-lipoic acid with creatine and a small amount of sucrose can enhance muscle total creatine content as compared to the ingestion of creatine and sucrose or creatine alone.


2011 ◽  
Vol 111 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Lorenzo K. Love ◽  
Paul J. LeBlanc ◽  
J. Greig Inglis ◽  
Nicolette S. Bradley ◽  
Jon Choptiany ◽  
...  

Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity ( r2 = 0.399, P = 0.001) and PDP1 protein expression ( r2 = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α ( r2 = 0.310, P = 0.002) and PDK2 protein ( r2 = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼18% of the variance in PDP activity ( r2 = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼38% of the variance in PDP activity ( r2 = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity).


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


1988 ◽  
Vol 34 (12) ◽  
pp. 2460-2462 ◽  
Author(s):  
J Arenas ◽  
V Diaz ◽  
G Liras ◽  
E Gutierrez ◽  
I Santos ◽  
...  

Abstract We studied possible correlations between anatomopathological and clinical features and the values for total creatine kinase (CK; EC 2.7.3.2) and its isoenzymes, including the proportion of CK-MB, in a population displaying several neuromuscular pathologies. Although we observed no specific isoenzyme pattern associated with the different myopathies, we found isoenzyme analysis useful in studying the histopathological evolution of illness. We also considered whether the pathology was regenerative or nonregenerative, and what type of fiber (I or II) was involved. High CK-MB percentages (greater than 6%) were associated with regenerative and type I fiber myopathies, with regenerative type tissues being the principal factor associated with an increasing proportion of CK-MB. Studying the changes in CK-MB percentage in serum appears to be useful in discriminating neuromuscular from myocardial pathologies.


2017 ◽  
Vol 117 (10) ◽  
pp. 1343-1350 ◽  
Author(s):  
Tsen-Wei Tsai ◽  
Chia-Chen Chang ◽  
Su-Fen Liao ◽  
Yi-Hung Liao ◽  
Chien-Wen Hou ◽  
...  

AbstractThe purpose of this study was to investigate the effects of 8-week green tea extract (GTE) supplementation on promoting postexercise muscle glycogen resynthesis and systemic energy substrate utilisation in young college students. A total of eight healthy male participants (age: 22·0 (se 1·0) years, BMI: 24·2 (se 0·7) kg/m2, VO2max: 43·2 (se 2·4) ml/kg per min) participated in this study. GTE (500 mg/d for 8 weeks) was compared with placebo in participants in a double-blind/placebo-controlled and crossover study design with an 8-week washout period. Thereafter, all participants performed a 60-min cycling exercise (75 % VO2max) and consumed a carbohydrate-enriched meal immediately after exercise. Vastus lateralis muscle samples were collected immediately (0 h) and 3 h after exercise, and blood and gaseous samples were collected during the 3-h postexercise recovery period. An 8-week oral GTE supplementation had no effects on further promoting muscle glycogen resynthesis in exercised human skeletal muscle, but the exercise-induced muscle GLUT type 4 (GLUT4) protein content was greater in the GTE supplementation trial (P<0·05). We observed that, during the postexercise recovery period, GTE supplementation elicited an increase in energy reliance on fat oxidation compared with the placebo trial (P<0·05), although there were no differences in blood glucose and insulin responses between the two trials. In summary, 8-week oral GTE supplementation increases postexercise systemic fat oxidation and exercise-induced muscle GLUT4 protein content in response to an acute bout of endurance exercise. However, GTE supplementation has no further benefit on promoting muscle glycogen resynthesis during the postexercise period.


1991 ◽  
Vol 81 (s25) ◽  
pp. 557-564 ◽  
Author(s):  
M. A. McNurlan ◽  
P. Essen ◽  
S. D. Heys ◽  
V. Buchan ◽  
P. J. Garlick ◽  
...  

1. The rate of protein synthesis in quadriceps muscle of healthy subjects estimated from the incorporation of l-[1-13C]leucine given by continuous infusion was 1.1%/day. The estimate of protein synthesis from the incorporation of a flooding amount of labelled leucine was 1.8%/day (sd 0.65). The possibility that the higher rate obtained with the flooding technique arose from stimulation of protein synthesis by the large amount of leucine is unlikely. 2. The same rate of protein synthesis (1.7%/day, sd 0.3) was obtained with a flooding amount (0.05 g/kg) of a different amino acid, l-[1-13C]phenylalanine, as was obtained with leucine. 3. Incorporation of l-[1-13C]phenylalanine was not affected by simultaneous injection of leucine (1.7%/day, sd 0.7) or valine (1.6%/day, sd 0.4). 4. Protein synthesis, assessed in a completely different way from the proportion of polyribosomes isolated from the skeletal muscle, was unaltered by the injection of 0.05 g of l-leucine/kg (44.6%, sd 8.5 versus 43.8%, sd 7.7). 5. Good agreement in estimates of protein synthesis was observed in subjects in whom both legs were measured with both l-[1-13C]leucine (mean difference 0.16%/day) and l-[1-13C]phenylalanine (mean difference 0.2%/day).


2000 ◽  
Vol 46 (3) ◽  
pp. 345-350 ◽  
Author(s):  
Hilary Brooks ◽  
Stephan Krähenbühl

Abstract Background: Measurement of complex I activity has been hampered by the large amounts of tissue required and the resulting turbidity of the assay solution, which makes spectrophotometric analysis difficult. We have developed a new assay for measuring the activity of complex I in isolated mitochondria that is also applicable to skeletal muscle homogenate in patients with suspected mitochondrial diseases. Methods: The method was a radioenzymatic assay based on the preferential oxidation of the 4B hydrogen of NADH by complex I. We prepared tritiated isoforms of NADH for both the respective 4A-3H and 4B-3H positions. Enzyme in the form of purified mitochondria or homogenate was prepared from rat or human skeletal muscle and incubated with the respective radioisotopes. The product (3H2O) was collected after charcoal adsorption of unreacted NADH and taken as an indicator of NADH oxidation. Sensitivity to rotenone was used as a measure of complex I specific activity. Results: The assay was linear with time and protein for isolated mitochondria and tissue homogenates from rats and humans. The Vmax and Km values obtained for 4B-NADH with isolated rat skeletal muscle mitochondria were 35 μmol/L and 90 μmol · min−1 · mg protein−1, respectively. The assay was reproducible and useable for routine measurements in human skeletal muscle. The sensitivity was &gt;10-fold higher than the sensitivities of spectrophotometric techniques. Conclusions: The results of our studies demonstrate the successful development of a new assay for complex I that is rapid, easy to perform, and that enables the processing of multiple samples at one time.


Sign in / Sign up

Export Citation Format

Share Document