Effects of Neural Mechanisms of Pretask Resting EEG Alpha Information on Situational Awareness: A Functional Connectivity Approach

Author(s):  
Ardaman Kaur ◽  
Rishu Chaujar ◽  
Vijayakumar Chinnadurai

Objective In this study, the influence of pretask resting neural mechanisms on situational awareness (SA)-task is studied. Background Pretask electroencephalography (EEG) information and Stroop effect are known to influence task engagement independently. However, neural mechanisms of pretask resting absolute alpha (PRAA) and pretask resting alpha frontal asymmetry (PRAFA) in influencing SA-task which is undergoing Stroop effect is still not understood. Method The study involved pretask resting EEG measurements from 18 healthy individuals followed by functional magnetic resonance imaging (fMRI) acquisition during SA-task. To understand the effect of pretask alpha information and Stroop effect on SA, a robust correlation between mean reaction time, SA Index, PRAA, and PRAFA were assessed. Furthermore, neural underpinnings of PRAA, PRAFA in SA-task, and functional connectivity were analyzed through the EEG-informed fMRI approach. Results Significant robust correlation of reaction time was observed with SA Index (Pearson: r = .50, pcorr = .05) and PRAFA (Pearson: r = .63; pcorr = .01), respectively. Similarly, SA Index significantly correlated with PRAFA (Pearson: r = .56, pcorr = .01; Spearman: r = .61, pcorr = .007), and PRAA (Pearson: r = .59, pcorr = .005; Spearman: r = .59, pcorr = .002). Neural underpinnings of SA-task revealed regions involved in visual-processing and higher-order cognition. PRAA was primarily underpinned at frontal-temporal areas and functionally connected to SA-task regions pertaining to the emotional regulation. PRAFA has correlated with limbic and parietal regions, which are involved in integration of visual, emotion, and memory information of SA-task. Conclusion The results suggest a strong association of reaction time with SA-task and PRAFA and strongly support the hypothesis that PRAFA, PRAA, and associated neural mechanisms significantly influence the outcome of SA-task. Application It is beneficial to study the effect of pretask resting information on SA-task to improve SA.

2019 ◽  
Author(s):  
Holly J. Bowen ◽  
Jaclyn H. Ford ◽  
Cheryl L. Grady ◽  
Julia Spaniol

AbstractBoth younger and older adults prioritize reward-associated stimuli in memory, but there has been little research on possible age differences in the neural mechanisms mediating this effect. In the current study, we examine neural activation and functional connectivity in healthy younger and older adults to test the hypothesis that older adults would engage prefrontal regions to a greater extent in the service of reward-enhanced memory. While undergoing MRI, target stimuli were presented after high or low-reward cues. The cues indicated the reward value for successfully recognizing the stimulus on a memory test 24-hours later. We replicated prior findings that both older and younger and adults had better memory for high compared to low-reward stimuli. Critically, in older, but not younger adults, this enhanced subsequent memory for high-reward items was supported by greater connectivity between the caudate and bilateral inferior frontal gyrus. The findings add to the growing literature on motivation-cognition interactions in healthy aging, and provide novel evidence of an age-related shift in the neural underpinnings of reward-motivated encoding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2008 ◽  
Vol 20 (12) ◽  
pp. 2137-2152 ◽  
Author(s):  
Kelly A. Snyder ◽  
Andreas Keil

Habituation refers to a decline in orienting or responding to a repeated stimulus, and can be inferred to reflect learning about the properties of the repeated stimulus when followed by increased orienting to a novel stimulus (i.e., novelty detection). Habituation and novelty detection paradigms have been used for over 40 years to study perceptual and mnemonic processes in the human infant, yet important questions remain about the nature of these processes in infants. The aim of the present study was to examine the neural mechanisms underlying habituation and novelty detection in infants. Specifically, we investigated changes in induced alpha, beta, and gamma activity in 6-month-old infants during repeated presentations of either a face or an object, and examined whether these changes predicted behavioral responses to novelty at test. We found that induced gamma activity over occipital scalp regions decreased with stimulus repetition in the face condition but not in the toy condition, and that greater decreases in the gamma band were associated with enhanced orienting to a novel face at test. The pattern and topography of these findings are consistent with observations of repetition suppression in the occipital–temporal visual processing pathway, and suggest that encoding in infant habituation paradigms may reflect a form of perceptual learning. Implications for the role of repetition suppression in infant habituation and novelty detection are discussed with respect to a biased competition model of visual attention.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi225
Author(s):  
Katharina Rosengarth ◽  
Katharina Hense ◽  
Tina Plank ◽  
Mark Greenlee ◽  
Christina Wendl ◽  
...  

Abstract OBJECTIVE Space-occupying brain lesions as brain tumors in the occipital lobe have only been sparsely investigated so far, as this localization is extremely rare with only 1% of cases. It is still unclear how this affects the overall organization of the visual system. We investigated functional connectivity of functional networks associated with higher visual processing between patients with occipital space-occupying lesion in the occipital cortex and healthy controls. METHODS 12 patients with brain tumors, 7 patients with vascular lesions in the occipital cortex and 19 healthy subjects matched for age and sex were included. During functional MRI patients and subjects performed a visual excentricity mapping task. Data analysis was done using CONN toolbox based on Matlab. See-to-ROI connectivities of 23 Regions of Interest (ROIs) implemented in the CONN toolbox which were assigned to the Default Mode, Visual, Salience, Dorsal Attention, and Frontoparietal network were assessed. For each subject, connectivity was calculated using Fischer transformed pairwise correlations. These correlations were first considered separately for each group in one-sample analyses and then compared between the groups. RESULTS Main results show, that compared to control subjects and vascular patients, tumor patients showed weaker intra-network connectivity of components of all networks except the default-network. Tumor patients showed even stronger between-network connectivity in the default-mode network compared to the other groups. Weaker connectivity was observed within the salience network in both patient groups compared to controls. CONCLUSION The results indicate that in the course of the disease, compensatory countermeasures take place in the brain against a brain tumor or a space-occupying brain lesion with the aim of maintaining the performance level and cognitive processes for as long as possible. However, more research is needed in this area to understand the mechanisms and effects of brain tumors and space-consuming brain lesions on surrounding tissue.


Cephalalgia ◽  
2021 ◽  
pp. 033310242110466
Author(s):  
Roberta Messina ◽  
Maria A Rocca ◽  
Paola Valsasina ◽  
Paolo Misci ◽  
Massimo Filippi

Objective To elucidate the hypothalamic involvement in episodic migraine and investigate the association between hypothalamic resting state functional connectivity changes and migraine patients’ clinical characteristics and disease progression over the years. Methods Ninety-one patients with episodic migraine and 73 controls underwent interictal resting state functional magnetic resonance imaging. Twenty-three patients and controls were re-examined after a median of 4.5 years. Hypothalamic resting state functional connectivity changes were investigated using a seed-based correlation approach. Results At baseline, a decreased functional interaction between the hypothalamus and the parahippocampus, cerebellum, temporal, lingual and orbitofrontal gyrus was found in migraine patients versus controls. Increased resting state functional connectivity between the hypothalamus and bilateral orbitofrontal gyrus was demonstrated in migraine patients at follow-up versus baseline. Migraine patients also experienced decreased right hypothalamic resting state functional connectivity with ipsilateral lingual gyrus. A higher migraine attack frequency was associated with decreased hypothalamic-lingual gyrus resting state functional connectivity at baseline, while greater headache impact at follow-up correlated with decreased hypothalamic-orbitofrontal gyrus resting state functional connectivity at baseline. At follow-up, a lower frequency of migraine attacks was associated with higher hypothalamic-orbitofrontal gyrus resting state functional connectivity. Conclusions During the interictal phase, the hypothalamus modulates the activity of pain and visual processing areas in episodic migraine patients. The hypothalamic-cortical interplay changes dynamically over time according to patients’ clinical features.


2018 ◽  
Author(s):  
Jennifer R Sadler ◽  
Grace Elisabeth Shearrer ◽  
Kyle Stanley Burger

Understanding weight-related differences in functional connectivity provides key insight into neurocognitive factors implicated in obesity. Here, we sampled three groups from human connectome project data: 1) 47 pairs of BMI-discordant twins (n=94; average BMI-discordancy 6.7 3.1 kg/m2), 2) 47 pairs of gender and BMI matched BMI-discordant, unrelated individuals, and 3) 47 pairs of BMI-similar twins to test for body mass dependent differences in between network functional connectivity. Across BMI discordant samples, three networks appeared to be highly sensitivity to weight status; specifically, a network compromised of gustatory processing regions, a visual processing network, and the default mode network (DMN). Further, individuals with a lower BMI relative to their twin had stronger connectivity between striatal/thalamic and prefrontal networks (pFWE = 0.04) in the BMI-discordant twin sample. Cortical-striatal-thalamic networks underlie regulation of hedonically motivated behaviors. Stronger connectivity may facilitate increased regulation of decision-making when presented with highly rewarding, energy-dense foods. We also observed that individuals with a higher BMI than their twin had stronger connectivity between cerebellar and insular networks (pFWE = 0.04). Increased cerebellar-insula connectivity is associated with caloric deprivation and, in high BMI individuals, is associated compromised satiation signaling, thereby increasing risk for postprandial food intake. Connectivity patterns observed in the BMI-discordant twin sample were not see in a BMI-similar sample, providing evidence that the results are specific to BMI discordance. Beyond the involvement of gustatory and visual networks and the DMN, little overlap in results were seen between the two BMI-discordant samples. This may be a function of the higher study design sensitivity in the BMI-discordant twin sample, relative to the more generalizable results in the unrelated sample. These findings demonstrate that distinct connectivity patterns can represent weight variability, adding to mounting evidence that implicates atypical brain functioning with the accumulation and/or maintenance of elevated weight.


Author(s):  
Mohammad S.E Sendi ◽  
Godfrey D Pearlson ◽  
Daniel H Mathalon ◽  
Judith M Ford ◽  
Adrian Preda ◽  
...  

Although visual processing impairments have been explored in schizophrenia (SZ), their underlying neurobiology of the visual processing impairments has not been widely studied. Also, while some research has hinted at differences in information transfer and flow in SZ, there are few investigations of the dynamics of functional connectivity within visual networks. In this study, we analyzed resting-state fMRI data of the visual sensory network (VSN) in 160 healthy control (HC) subjects and 151 SZ subjects. We estimated 9 independent components within the VSN. Then, we calculated the dynamic functional network connectivity (dFNC) using the Pearson correlation. Next, using k-means clustering, we partitioned the dFNCs into five distinct states, and then we calculated the portion of time each subject spent in each state, that we termed the occupancy rate (OCR). Using OCR, we compared HC with SZ subjects and investigated the link between OCR and visual learning in SZ subjects. Besides, we compared the VSN functional connectivity of SZ and HC subjects in each state. We found that this network is indeed highly dynamic. Each state represents a unique connectivity pattern of fluctuations in VSN FNC, and all states showed significant disruption in SZ. Overall, HC showed stronger connectivity within the VSN in states. SZ subjects spent more time in a state in which the connectivity between the middle temporal gyrus and other regions of VNS is highly negative. Besides, OCR in a state with strong positive connectivity between middle temporal gyrus and other regions correlated significantly with visual learning scores in SZ.


2020 ◽  
Author(s):  
Shuxia Yao ◽  
Menghan Zhou ◽  
Yuan Zhang ◽  
Feng Zhou ◽  
Qianqian Zhang ◽  
...  

AbstractWhile a number of functional and structural changes occur in large-scale brain networks in autism spectrum disorder (ASD), reduced interhemispheric resting state functional connectivity (rsFC) between homotopic regions may be of particular importance as a biomarker. ASD is an early-onset developmental disorder and neural alterations are often age-dependent, reflecting dysregulated developmental trajectories, although no studies have investigated whether homotopic interhemispheric rsFC alterations occur in ASD children. The present study conducted a voxel-based homotopic interhemispheric rsFC analysis in 146 SD and 175 typically developing children under age 10 and examined associations with symptom severity in the Autism Brain Imaging Data Exchange datasets. Given the role of corpus callosum (CC) in interhemispheric connectivity and reported CC volume changes in ASD we additionally examined whether there were parallel volumetric changes in ASD children. Results demonstrated decreased homotopic rsFC in ASD children in the medial prefrontal cortex, precuneus and posterior cingulate cortex of the default mode network (DMN), the dorsal anterior cingulate cortex of the salience network, the precentral gyrus and inferior parietal lobule of the mirror neuron system, the lingual, fusiform and inferior occipital gyri of the visual processing network and thalamus. Symptom severity was associated with homotopic rsFC in regions in the DMN and visual processing network. There were no significant CC volume changes in ASD children. The present study shows that reduced homotopic interhemispheric rsFC in brain networks in ASD adults/adolescents is already present in children of 5-10 years old and further supports their potential use as a general ASD biomarker.


Cortex ◽  
2014 ◽  
Vol 59 ◽  
pp. 1-11 ◽  
Author(s):  
Christianne Jacobs ◽  
Tom A. de Graaf ◽  
Alexander T. Sack

2020 ◽  
Vol 30 (9) ◽  
pp. 5107-5120 ◽  
Author(s):  
Katherine E Lawrence ◽  
Leanna M Hernandez ◽  
Hilary C Bowman ◽  
Namita T Padgaonkar ◽  
Emily Fuster ◽  
...  

Abstract Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8–17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.


Sign in / Sign up

Export Citation Format

Share Document