scholarly journals Effectiveness of Lateral Auditory Collision Warnings: Should Warnings Be Toward Danger or Toward Safety?

Author(s):  
Jing Chen ◽  
Edin Šabić ◽  
Scott Mishler ◽  
Cody Parker ◽  
Motonori Yamaguchi

Objective The present study investigated the design of spatially oriented auditory collision-warning signals to facilitate drivers’ responses to potential collisions. Background Prior studies on collision warnings have mostly focused on manual driving. It is necessary to examine the design of collision warnings for safe takeover actions in semi-autonomous driving. Method In a video-based semi-autonomous driving scenario, participants responded to pedestrians walking across the road, with a warning tone presented in either the avoidance direction or the collision direction. The time interval between the warning tone and the potential collision was also manipulated. In Experiment 1, pedestrians always started walking from one side of the road to the other side. In Experiment 2, pedestrians appeared in the middle of the road and walked toward either side of the road. Results In Experiment 1, drivers reacted to the pedestrian faster with collision-direction warnings than with avoidance-direction warnings. In Experiment 2, the difference between the two warning directions became nonsignificant. In both experiments, shorter time intervals to potential collisions resulted in faster reactions but did not influence the effect of warning direction. Conclusion The collision-direction warnings were advantageous over the avoidance-direction warnings only when they occurred at the same lateral location as the pedestrian, indicating that this advantage was due to the capture of attention by the auditory warning signals. Application The present results indicate that drivers would benefit most when warnings occur at the side of potential collision objects rather than the direction of a desirable action during semi-autonomous driving.

Author(s):  
R.J. Milner ◽  
F. Reyers ◽  
J.H. Taylor ◽  
J.S. Van den Berg

A clinical trial was designed to evaluate the effects of diminazene aceturate and its stabiliser antipyrine on serum pseudocholinesterase (PChE) and red blood cell acetylcholinesterase (RBC AChE) in dogs with babesiosis. The trial was conducted on naturally occurring, uncomplicated cases of babesiosis (n = 20) that were randomly allocated to groups receiving a standard therapeutic dose of diminazene aceturate with antipyrine stabiliser (n = 10) or antipyrine alone (n = 10). Blood was drawn immediately before and every 15 minutes for 1 hour after treatment. Plasma PChE showed a 4 % decrease between 0 and 60 min within the treatment group (p < 0.05). No statistically significant differences were found between the treatment and control groups at any of the time intervals for PChE. There was an increase in RBC AChE activity at 15 min in the treatment group (p < 0.05). No significant differences were found between the treatment and control groups at any time interval for RBC AChE. In view of the difference in PChE, samples from additional, new cases (n = 10) of canine babesiosis were collected to identify the affect of the drug over 12 hours. No significant depression was identified over this time interval. The results suggests that the underlying mechanism in producing side-effects, when they do occur, is unlikely to be through cholinesterase depression.


2019 ◽  
Vol 9 (5) ◽  
pp. 996
Author(s):  
Fenglei Ren ◽  
Xin He ◽  
Zhonghui Wei ◽  
Lei Zhang ◽  
Jiawei He ◽  
...  

Road detection is a crucial research topic in computer vision, especially in the framework of autonomous driving and driver assistance. Moreover, it is an invaluable step for other tasks such as collision warning, vehicle detection, and pedestrian detection. Nevertheless, road detection remains challenging due to the presence of continuously changing backgrounds, varying illumination (shadows and highlights), variability of road appearance (size, shape, and color), and differently shaped objects (lane markings, vehicles, and pedestrians). In this paper, we propose an algorithm fusing appearance and prior cues for road detection. Firstly, input images are preprocessed by simple linear iterative clustering (SLIC), morphological processing, and illuminant invariant transformation to get superpixels and remove lane markings, shadows, and highlights. Then, we design a novel seed superpixels selection method and model appearance cues using the Gaussian mixture model with the selected seed superpixels. Next, we propose to construct a road geometric prior model offline, which can provide statistical descriptions and relevant information to infer the location of the road surface. Finally, a Bayesian framework is used to fuse appearance and prior cues. Experiments are carried out on the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) road benchmark where the proposed algorithm shows compelling performance and achieves state-of-the-art results among the model-based methods.


1952 ◽  
Vol 48 (4) ◽  
pp. 608-615
Author(s):  
F. I. Mikhail

AbstractThe so-called ‘clock paradox’ is concerned with the difference in the time-intervals reckoned by two observers in relative motion for the lapse of time between two encounters. In this paper the problem is treated purely by general relativity by considering a particular example in which the two observers are attached to two test-particles moving freely in the field of a gravitating mass; one of these makes complete revolutions in a circular orbit while the other moves radially outwards and inwards. The time-interval between two successive encounters is shorter in the reckoning of the former than in that of the latter. The difference is found to agree qualitatively with a naïve application of special relativity.


Author(s):  
Jeffrey W. Muttart ◽  
Swaroop Dinakar ◽  
Gregory Vandenberg ◽  
Michael Yosko

Over the years, in a night time driving scenario, expectancy has been linked with faster night time recognition. This study tries to evaluate the ability of observers to identify illuminated objects on the road in the absence of an associative pattern. In this study 47 of 60 participants did not respond to a light source that was in the drivers’ travel lane ahead. Of those who did not respond to the light when directly ahead, 64% indicated that had seen it beforehand. When the light was 2 meters to the drivers’ right, 33% that saw the light failed to respond. All of the drivers who saw the light before striking it claimed that they thought it was off the road until too late. When the drivers did not know what the light source was, they could not decipher where the light was. However, once aware of the presence of the light the average recognition distance improved 192 meters (632 feet) with 100% recognition. These results fit well with the SEEV search model and an Information Theory approach to driver expectancy. Previous claims that the difference between expected and unexpected driver responses is a 2 to 1 ratio was not supported by this research.


Author(s):  
Edin Sabic ◽  
Jing Chen

Assistance driving systems aim to facilitate human behavior and increase safety on the road. These systems comprise common systems such as forward collision warning systems, lane deviation warning systems, and even park assistance systems. Warning systems can communicate with the driver through various modalities, but auditory warnings have the advantage of not further tasking visual resources that are primarily used for driving. Auditory warnings can also be presented from a certain location within the cab environment to be used by the driver as a cue. Beattie, Baillie, Halvey, and McCall (2014) assessed presenting warnings in stereo configuration, coming from one source, and bilateral configuration, panned fully from left or right, and found that drivers felt more in control with lateral warnings than stereo warnings when the car was in self-driving mode. Straughn, Gray, and Tan (2009) examined laterally presented auditory warnings to signal potential collisions. They found that the ideal presentation of warnings in either the avoidance direction, in which the driver should direct the car to avoid a collision, or the collision direction, in which the potential collision is located, was dependent on time to collision. Wang, Proctor, and Pick (2003) applied the stimulus-response compatibility principle to auditory warning design by using a steering wheel in a non-driving scenario and found that a tone presented monaurally in the avoidance-direction led to the fastest steering response. However, the reverse finding occurred when similar experiments utilized a driving simulator in a driving scenario (Straughn et al., 2009; Wang, Pick, Proctor, & Ye, 2007). The present study further investigated how to design spatially presented auditory collision warnings to facilitate drivers’ response to potential collisions. Specifically, tones indicating a pedestrian walking across the road were presented either in the avoidance direction or in the collision direction. The experimental task consisted of monitoring the road for potential collisions and turning the wheel in the appropriate direction to respond. Additionally, time to collision was manipulated to investigate the impact of the timing of the warning and increasing time pressure on the steering response. Time to collision was manipulated by half second intervals from two to four seconds resulting in five different time-to-collision scenarios. Lastly, the effect of individual differences in decision-making styles were also considered by using two decision-making style questionnaires. Results from the experiment showed that the presentation of a collision warning in the collision direction led to faster responses when compared to the warning in the avoidance direction. This result may be due to the collision warning directing the attention of the participant to the location of the threat so that they can more quickly make a response decision. Further, the advantage of avoidance-direction warnings over collision-direction warnings was greater with greater time to collision. Results showed that participant responses to varying time to collision influenced their reaction time. The participants appeared to have not relied solely on the auditory tones, but rather they utilized the warning tones in conjunction with visual information in the environment. These results from this study have implications for improving collision avoidance systems: Presentation of a collision warning in the direction of the collision may be more intuitive to drivers, regardless of time to collision.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 928
Author(s):  
Man Kiat Wong ◽  
Tee Connie ◽  
Michael Kah Ong Goh ◽  
Li Pei Wong ◽  
Pin Shen Teh ◽  
...  

Background: Autonomous vehicles are important in smart transportation. Although exciting progress has been made, it remains challenging to design a safety mechanism for autonomous vehicles despite uncertainties and obstacles that occur dynamically on the road. Collision detection and avoidance are indispensable for a reliable decision-making module in autonomous driving. Methods: This study presents a robust approach for forward collision warning using vision data for autonomous vehicles on Malaysian public roads. The proposed architecture combines environment perception and lane localization to define a safe driving region for the ego vehicle. If potential risks are detected in the safe driving region, a warning will be triggered. The early warning is important to help avoid rear-end collision. Besides, an adaptive lane localization method that considers geometrical structure of the road is presented to deal with different road types. Results: Precision scores of mean average precision (mAP) 0.5, mAP 0.95 and recall of 0.14, 0.06979 and 0.6356 were found in this study. Conclusions: Experimental results have validated the effectiveness of the proposed approach under different lighting and environmental conditions.


Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Irfan Khan ◽  
Nicola Amati ◽  
Andrea Tonoli

Abstract This paper presents a technique based on the probabilistic road map algorithm for trajectory planning in autonomous driving. The objective is to provide an algorithm allowing to compute the trajectory of the vehicle by reducing the distance traveled and minimizing the lateral deviation and relative yaw angle of the vehicle with respect to the reference trajectory, while maximizing its longitudinal speed. The vehicle is considered as a 3 Degree-of-Freedom bicycle model and a Model Predictive Control algorithm is implemented to control the lateral and longitudinal dynamics. Both the control and trajectory generation algorithms take the road lane boundaries as the only input from the surrounding environment exploiting a simulated camera. The performance of the technique is compared with the case in which the reference trajectory is the central line between the lane boundaries. The proposed algorithm is validated in a simulated driving scenario.


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document