The KB System: A Modular Control Panel Concept

Author(s):  
William H. Harkins

This report describes the design and development of an integrated system of manually operable switch modules and related keyboard and control panel components called the KB System. The size of the basic module was based on the standard center-to-center spacing of keys in a conventional keyboard. The system of components and mounting structure based on this module can be assembled in an unlimited number of arrangements to satisfy widely varying man-machine system control and display requirements.

2021 ◽  
Vol 252 ◽  
pp. 01045
Author(s):  
Guozhong Wang ◽  
Yin Zeng ◽  
Juanping Shen ◽  
Hongming Zhu

The DC system is used as the power supply for all kinds of protection, measurement and control, safety automation and other devices in the substation. It is the fundamental guarantee of power system control and protection. If the substation DC system fails, it will have a destructive impact on the entire substation system and function. Based on this, in order to solve the problems of maloperation and refusal of protection device caused by grounding fault of DC system, a method combining unbalanced bridge method with leakage current sensor is proposed to detect the grounding resistance of bus and branch. On this basis, the neural network optimized by quantum particle swarm optimization is used to determine the fault type. Finally, the effectiveness of the proposed method is verified by MATLAB/Simulink simulation.


2012 ◽  
Vol 246-247 ◽  
pp. 666-670
Author(s):  
Yan Quan Wang ◽  
Gang Wang

With the development of production automation and science and technology level, the intelligent level of the car is continuously improved. For intelligent car, with STC89S52 single chip microcomputer as its core of control, the direction and speed of it is controlled by the collection and processing of the signals from various kinds of transducers in the forward path. Therefore, the functions of automatic identification of black guide line applied to rapid and steady running status of the car and the obstacle color discrimination applied to direction selection during the course of running and other relevant functions can be realized. In this system, a DC motor is used for the forward and steering movement of the car, a LCD1602 is used for the display of its travel time, and a dual power supply by which system stability can be enhanced is used for the motor and control system respectively. Besides, the system control software is designed to be a combination of software and hardware, through which the anticipated functions of the car is ultimately realized.


2019 ◽  
pp. 64-72
Author(s):  
G.G. Arunyants

The results of analysis of problems of regulation of gas supply complex of Kaliningrad region and main ways to increase its efficiency, as well as basic solutions for creation of a software complex Т-GAZ-2 automated calculation of natural gas tariffs for ACS of gas supply system subjects, geographically distributed and information connected to the regional automated information and control system (RAIS).


2006 ◽  
Vol 31 (11-12) ◽  
pp. 1198-1208 ◽  
Author(s):  
Chung-Feng Jeffrey Kuo ◽  
Cheng-Chih Tsai

2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


Author(s):  
Ju Xie ◽  
Xing Xu ◽  
Feng Wang ◽  
Haobin Jiang

The driver model is the decision-making and control center of intelligent vehicle. In order to improve the adaptability of intelligent vehicles under complex driving conditions, and simulate the manipulation characteristics of the skilled driver under the driver-vehicle-road closed-loop system, a kind of human-like longitudinal driver model for intelligent vehicles based on reinforcement learning is proposed. This paper builds the lateral driver model for intelligent vehicles based on optimal preview control theory. Then, the control correction link of longitudinal driver model is established to calculate the throttle opening or brake pedal travel for the desired longitudinal acceleration. Moreover, the reinforcement learning agents for longitudinal driver model is parallel trained by comprehensive evaluation index and skilled driver data. Lastly, training performance and scenarios verification between the simulation experiment and the real car test are performed to verify the effectiveness of the reinforcement learning based longitudinal driver model. The results show that the proposed human-like longitudinal driver model based on reinforcement learning can help intelligent vehicles effectively imitate the speed control behavior of the skilled driver in various path-following scenarios.


2014 ◽  
Vol 556-562 ◽  
pp. 1358-1361 ◽  
Author(s):  
Wen Bo Zhu ◽  
Fen Zhu Ji ◽  
Xiao Xu Zhou

Wire of the brake pedal is not directly connected to the hydraulic environment in the braking By-wire system so the driver has no direct pedal feel. Then pedal simulator is an important part in the brake-by-wire system. A pedal force simulator was designed based on the traditional brake pedal curve of pedal force and pedal travel, AMESim and Matlab / Simulink were used as a platform to build simulation models and control algorithms. The simulation results show that the pedal stroke simulator and the control strategy meet the performance requirements of traditional braking system. It can be used in brake by wire system.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


Aviation ◽  
2012 ◽  
Vol 16 (4) ◽  
pp. 130-135
Author(s):  
Vaidotas Kondroška ◽  
Jonas Stankūnas

This work reviews the innovative and progressive methods of determination and analysis of safety objectives using Vilnius A-SMGCS example. The aim of the analysis is to determine how failures in this system could affect flight safety in Vilnius aerodrome. Identified safety objectives will limit the frequency of occurrence of hazards enough for the associated risk to be acceptable, and will ensure that appropriate mitigation means are reflected subsequently as Safety Requirements for the system. Analysis reflects aspects of A-SMGCS Safety objectives, which should be taken into consideration. Santrauka Darbe apžvelgiami progresyvūs saugos tikslų analizės metodai pagal Vilniaus aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos veiklos pavyzdį. Analizuojama, kaip šios sistemos sutrikimai gali paveikti skrydžių saugą Vilniaus aerodrome. Remiantis galimų pavojų skrydžių saugai analize, tyrime nustatyti saugos tikslai, pagal kuriuos vėliau bus numatomos riziką mažinančios priemonės (galimų pavojų neutralizavimui ar kylančios rizikos sumažinimui iki priimtino lygio). Straipsnyje pateikiami veiksniai, kuriuos reikėtų įvertinti nustatant aerodromo automatizuotos antžeminio eismo stebėjimo ir kontrolės sistemos saugos tikslus.


2007 ◽  
Vol 3 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Zbigniew Smalko

Relations Between Safety and Security in Technical Systems The subject of this paper deals with the relationship between safety and security of the man - machine system. In the above system a man can act both as a decision - maker and operator. His desired psychophysical efficiency lies in the undertaking the correct decisions as well as in the skilful machine control and operating.


Sign in / Sign up

Export Citation Format

Share Document