Optimization of tribological properties of aluminum hybrid composites using Taguchi design

2016 ◽  
Vol 51 (17) ◽  
pp. 2505-2515 ◽  
Author(s):  
Sandra Veličković ◽  
Blaža Stojanović ◽  
Miroslav Babić ◽  
Ilija Bobić

This paper analyses the influence of graphite reinforcement, load and sliding speed with constant sliding distance on tribological behavior of A356 aluminum matrix composites reinforced with 10 wt.% silicon carbide and graphite using the Taguchi design. Hybrid composites were produced in the compo-casting process. Tribological tests were performed on a block-on-disc tribometer where the weight percentage of graphite has three variations (0, 3, and 5), as well as load (10 N, 20 N, and 30 N) and sliding speed (0.25 m/s, 0.5 m/s, and 1 m/s), with sliding distance of 300 m. The wear of the composite is investigated under dry sliding condition. The specific wear rate was analyzed using Taguchi method with the aim of finding the optimal parameters. By applying analysis of variance, it was determined that the best tribological properties has A356/10SiC/3Gr hybrid composite. It was also found that the greatest impact on specific wear rate has load with the percentage effect of 69.163%, then sliding speed with 14.426% and the interaction between wt.% graphite and load. The dominant wear mechanism is adhesive wear as confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS).

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiaqi Pan ◽  
Xiaoshan Liu ◽  
Guoqiu He ◽  
Bin Ge ◽  
Peiwen Le ◽  
...  

Purpose The purpose of this paper is to understand the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites manufactured using a newly developed vacuum stir casting technique. Design/methodology/approach A356 alloy reinforced with 10, 15 and 20 vol% SiC particles was prepared by vacuum stir casting. Tribological tests were carried out on block-on-ring tribometer under dry sliding conditions, room temperature. Wear mechanism was investigated by scanning electron microscope and energy dispersion spectrum. Findings SiCP is homogeneously dispersed in the matrix. The increase in SiCP content decrease wear rate, but it leads to an increase in coefficient of friction. The wear rate increase and friction coefficient present different variation trends with increasing load. For A356-20%SiCP composite, when the load is less than 10 MPa, wear rate and friction coefficient under sliding speed of 400 rpm are lower than those of 200 rpm. Wear mechanism transition from abrasion, oxidation, delamination, adhesion to plastic flow as load and sliding speed increasing. Practical implications Results of this study will help guide the use of A356-SiCP in many automotive products such as brake rotors, brake pads, brake drums and pistons. Originality/value There are few paper studies the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites. Aluminum matrix composites with uniform distribution of reinforcing particles were successfully prepared by using the newly developed vacuum stir casting technique.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 141 ◽  
Author(s):  
Chang-Mou Wu ◽  
Yi-Ching Cheng ◽  
Wen-You Lai ◽  
Po-Hsun Chen ◽  
Tzong-Der Way

Here, staple carbon fiber fabric-reinforced polycarbonate (PC)- and epoxy (EP)-based composites with different impregnating resin levels were fabricated using a modified film stacking process. The effects of surface topographies and resin types on the tribological properties of stable carbon fabric composites (sCFC) were investigated. Friction and wear tests on the carbon composites were conducted under unlubricated sliding using a disk-on-disk wear test machine. Experimental results showed that the coefficient of friction (COF) of the sCFC was dominated by matrix type, followed by peak material portion (Smr1) values, and finalized with core height (Sk) values. The COF of composites decreased by increasing the sliding speed and applied pressure. This also relied on surface topography and temperature generated at the worn surface. However, the specific wear rate was strongly affected by resin impregnation. Partially-impregnated composites showed lower specific wear rate, whereas fully-impregnated composites showed a higher wear rate. This substantially increased by increasing the sliding speed and applied pressure. Scanning electron microscopy observations of the worn surfaces revealed that the primary wear mechanisms were abrasion, adhesion, and fatigue for PC-based composites. For EP-based composites, this was primarily abrasion and fatigue. Results proved that partially-impregnated composites exhibited better tribological properties under severe conditions.


2014 ◽  
Vol 1025-1026 ◽  
pp. 292-297
Author(s):  
Witsarut Penglao ◽  
Luangvaranunt Tachai ◽  
Boonrat Lohwongwatana

Pin-on-disk technique was used as a tool to study the tribological properties of contacting surfaces of alumina-titanium carbide composite material and diamond slicing blade. Conditions for testing are linear sliding speed between 0.2 and 0.4 m/s under applied load of 10 N and sliding distance up to 5000 m. The physical properties of both specimens which are mass loss, surface roughness and morphology of worn surface are investigated. The effect of linear sliding speed is analyzed in term of friction coefficient, surface roughness, and specific wear rate. It was found that, at initial state of wear, when sliding distant is less than 1000 m, the wear is severe, as seen by high values of specific wear rate and large fluctuation of friction coefficient. Worn surface of AlTiC is rougher than as-received condition. For a longer sliding distant, milder abrasion is found, as seen by the lower specific wear rate, and less fluctuation of friction coefficient, which produces worn AlTiC surface which is smoother than the as-received condition.


2014 ◽  
Vol 66 (3) ◽  
Author(s):  
Mohd Fadzli Abdollah ◽  
Mohd Afiq Azfar Mazlan ◽  
Hilmi Amiruddin ◽  
Noreffendy Tamaldin

Friction and wear behaviors of ball bearings made from carbon-chrome steel were experimentally simulated using a modified ball-on-disc tribometer. The test was performed over a broad range of applied loads (W), sliding velocities (v) and sliding distances (L) under gas lubricated conditions using a Taguchi method. The results found that gas blown to the sliding surfaces in air effectively reduced the coefficient of friction as compared with the air lubrication at higher applied load, sliding speed and sliding distance. In addition, a specific wear rate is constant throughout the tests under gas lubricated conditions. However, under air lubrication, the specific wear rate decreases with increasing applied load, sliding speed and sliding distance. By using the optimal design parameters, a confirmation test successfully verify the N2-gas lubrication reduced average coefficient of friction and simultaneously improved wear resistance about 24% and 50%, respectively. This is in accordance with a significant reduction of wear scar diameter and smoother worn surface on a ball.


Author(s):  
Gurpreet Singh ◽  
Sanjeev Goyal

In the present work, dry sliding wear behaviour of hybrid aluminum metal matrix composites is carried out. A mixture of silicon carbide and boron carbide is used in equal fraction as reinforcement with base material AA6082-T6 to prepare AA6082-T6/SiC/B4C hybrid metal matrix composites using stir casting technique. The weight percentage of silicon carbide and boron carbide mixture taken to prepare hybrid composites is 5, 10, 15 and 20. The wear behaviour of Al-SiC-B4C composites is investigated using a pin-on-disc apparatus at room temperature, and optimization of process parameters is done using response surface methodology. The weight percentage of reinforcement, sliding speed, load and sliding distance are selected as process parameters with five levels of each. Analysis of variance shows that wear increases with increase of load or sliding distance and decreases with an increase in reinforcement or sliding speed. The experimental results revealed that the wear of Al-SiC-B4C hybrid composites has been influenced most by the sliding distance and least by weight percentage of reinforcement. The interaction between load–sliding speed is the only significant two-factor interaction in the present model which increases wear rate in fabricated hybrid composites. Further, the experimental results obtained are verified by conducting confirmation tests, and the errors found are within 3 to 7%.


2015 ◽  
Vol 813-814 ◽  
pp. 121-126
Author(s):  
N.G. Siddesh Kumar ◽  
G.S. Shiva Shankar ◽  
S. Basavarajappa

In this study, B4C and MoS2 were taken as reinforcements and Al2219 as matrix material. The hybrid MMC’s were produced by stir casting technique and Mechanical,Tribological properties of aluminium metal matrix hybrid composites was studied. K2TiF6 halide salt with 0.4Ti/B4C ratio were taken to improve the wettablity of composites.The hybrid composites were characterized by using SEM and XRD.The result reviles that, the fairly distribution of B4Cp and MoS2 right through the image and no clustering can be seen.XRD pattern shows the occurrence of B4C and MoS2 in prepared composites. The Physical and Mechanical properties were determined for Al2219 and hybrid composites. Micro Vickers Hardness of matrix material is low and for hybrid composite is high. Ultimate tensile strength and yield strength of prepared hybrid composites is low when compared to Al2219; it is generally due to crack propagation and particle pull out of MoS2 particle.The dry sliding wear behavior were examine by pin-on disc tribometer for different sliding velocities and test result reviles the specific wear rate is minimum for 1.26 m/s and maximum for 6.30 m/s, as the sliding velocity increases the specific wear rate increases. Tensile fractured surface and worn surface pin samplesof Al2219 and hybrid MMC’s were examine using SEM micrograph


2019 ◽  
Vol 8 (3) ◽  
pp. 4808-4815

The emerging technologies and trends of the present generation require downsizing the unwieldy structures to lightweight structures. Aluminum matrix composites are tailored candidate materials for aerospace applications due to their outstanding greater strength to weight ratio and low wear rate. In this study, Al7075 alloy-Beryl-Graphene hybrid composites are developed by using stir casting process. Graphene weight percentage was varied from 0 wt. % to 2 wt. % in steps of 0.5 wt. %. Whereas for Beryl 6 wt. % is used thorough out the study. The casted specimens were heat-treated at T6 solutionizing temperature of 530±5oC for 8 hours. After the heat treatment the specimen are quenched in boiling Water and Ice. The microstructure of the newly developed hybrid MMCs has been investigated by TEM and SEM. The microstructural study reveals the uniform distribution of reinforcement into matrix materials. The hardness and wear behavior of matrix and hybrid composites before and after heat treatment examined by Brinell hardness test and Pin-on-disc test machine respectively. The heat-treated Al7075-Beryl-Graphene hybrid composites significantly improved the hardness and low wear rate compared to base matrix Al7075 alloy


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Sign in / Sign up

Export Citation Format

Share Document