Effect of matrix powder and reinforcement content on tribological behavior of particulate 6061Al-TiB2 composites

2018 ◽  
Vol 53 (9) ◽  
pp. 1181-1195 ◽  
Author(s):  
Mahesh Paidpilli ◽  
Gaurav Kumar Gupta ◽  
Anish Upadhyaya

In the present work, 6061Al-TiB2 composites were synthesized using two types of base 6061Al powder (prealloyed and premixed) through powder metallurgy route. Dry sliding wear test was performed on the specimens using pin on disk apparatus to investigate the effect of TiB2 content on tribological characteristics. The microstructure, worn surface, and subsurface were also characterized using scanning electron microscope to examine the wear mechanism of prealloyed- and premixed-based composites. A mathematical model was developed using parameters (composition and applied load) to predict wear rate and correlated with experimental results. Adequacy of developed model has been validated using analysis of variance. Results indicated that premixed 6061Al-TiB2 composites have superior tribological properties as compared to the prealloyed 6061Al-TiB2 composite.

2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


2013 ◽  
Vol 721 ◽  
pp. 303-307
Author(s):  
Hong Xu ◽  
Yi Chao Ding ◽  
Jing Wang

(Ti,V)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure and wear properties were investigated by scanning electron microscopy and dry sliding wear test. The results show that fine (Ti,V)C particulates distribute uniformly in pearlite matrix; when V/Ti atomic ratio is 0.4, the wear weight loss of the composites achieve minimum.


2021 ◽  
Vol 1021 ◽  
pp. 78-86
Author(s):  
Hussein M. Ali ◽  
Qussay Y. Hamid ◽  
Thaer F.A. Al-Sultan

In the present work, an experimental investigation has been made of a dry sliding wear rate for aluminum, aluminum alloy (Al-Fe-V-Si), bronze, stainless steel 304 and structural steel ASTM A36, using a pin-on-disk apparatus under the effect of sliding speed and time at constant load. The materials were tested on two types of abrasive surfaces with a grit surface of 24 and 36. The applied load was equal to 2500 grams and the same load was used for all of the pins that were tested. The relative wear was indicated by the loss in length and loss in mass. The results show that the wear rate will directly proportional with sliding speed and time, and the stainless steel has less wear rate than the other materials.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Fatih Aydin ◽  
M. Emre Turan

Abstract The goal of the study is to examine the dry sliding wear behavior of pure Mg and Mg/nano-boron nitride (BN) composite at elevated temperatures. The wear behavior of the samples was evaluated under loads of 5, 10, and 20 N, at sliding speed of 80, 130, and 180 mm s−1 and at temperatures of 25, 100, and 175 °C. The examination of worn surface, counterface, and wear debris was performed. The results showed that nano-BN particles lead to substantial enhancement of wear resistance for both room and elevated temperatures. Mg/0.25 BN has lower coefficient of friction values due to the presence of BN which act as solid lubricant. The wear mechanisms are thermal softening, melting, oxidation, abrasion, and delamination.


2010 ◽  
Vol 154-155 ◽  
pp. 1000-1003 ◽  
Author(s):  
Yong Feng Jiang ◽  
Ying Yue Zhang ◽  
Ye Feng Bao ◽  
Hua Shan Yang

Wear behaviours of micro-arc oxidation (MAO) coatings on pure aluminum in a phosphate based electrolyte were investigated. The surface morphology, cross-section morphology and elements distribution of coatings were observed by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Wear test was proceeded with improved pin-on-disk tester under the dry sliding friction condition at load of 10 N. The results show that coatings structure are poly-porous and uniform, the components in the phosphate electrolyte do not participate in the formation of coatings, coatings are oxidized and sintered intrinsically. Wear weight loss of MAO coatings decrease by a factor of 20 in compare with the pure aluminum substrate, and abrasive wear assisted stripping from micro-cracking is predominant wear mechanism.


2007 ◽  
Vol 124-126 ◽  
pp. 1409-1412
Author(s):  
Jung Moo Lee ◽  
Suk Bong Kang ◽  
Jian Min Han

Thick alumina coatings were performed on A356-20vol.% SiCp composites by micro-arc oxidation (MAO) process with different processing time. The dry sliding wear tests were performed on A356-20vol.% SiCp composites with and without surface coating. The samples were tested by pin-on-disc wear test equipment with different applied load and sliding velocity. It is revealed that MAO coating improves resistance to wear of A356-20vol.% SiCp composites in the severe wear conditions. On the basis of the observations and analysis of the worn surface, worn subsurface, wear debris and variation of friction coefficient, the role of MAO coating layer is examined.


2019 ◽  
Vol 895 ◽  
pp. 45-51
Author(s):  
M.J. Raghu ◽  
Govardhan Goud

Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.


2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


2007 ◽  
Vol 342-343 ◽  
pp. 557-560
Author(s):  
Kwon Yong Lee ◽  
Hwan Kim ◽  
D.W. Kim ◽  
Dae Joon Kim ◽  
Myung Hyun Lee ◽  
...  

The sliding wear of four different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were characterized in a ceramicceramic point contact pair. The wear tests were performed by a pin-on-disk type wear tester in a linear reciprocal sliding motion with a point contact in both dry and bovine serum lubricated conditions at room temperature. For the dry sliding wear tests, AZ-2 (20 vol% (Y,Nb,Ce)-TZP/ 80 vol% Al2O3) showed the best wear resistance among four kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic- ceramic contact pairs of femoral head and acetabular liner in total hip replacement.


Author(s):  
Arabinda Meher ◽  
Manas Mohan Mahapatra ◽  
Priyaranjan Samal ◽  
Pandu R. Vundavilli

In the present study, the statistical analysis on tribological behavior of RZ5/TiB2 magnesium-based metal matrix composites is carried out using Taguchi design and analysis of variance (ANOVA) technique. Taguchi analysis using signal-to-noise ratio indicates that the sliding distance and wt.% TiB2 are the most significant factors in evaluating weight loss and coefficient of friction, respectively. The regression equation is formulated utilizing the ANOVA technique to study the output responses based on the input abrasive wear test experimental results. The regression equation is validated through a comprehensive study taking a series of abrasive wear tests and indicates the percentage deviation of regression modeling is in the range of ± 10%. The individual and combined effect of wear parameters on tribological behavior are investigated through the main effect plots and response surface plots. The micrograph of the worn surface of RZ5/TiB2 composites is studied using field emission scanning electron microscope (FESEM), indicating the formation of an oxide layer on the worn surface.


Sign in / Sign up

Export Citation Format

Share Document