Effects of Surface Coating on Wear Properties of A356-20vol.%SiCp Composites

2007 ◽  
Vol 124-126 ◽  
pp. 1409-1412
Author(s):  
Jung Moo Lee ◽  
Suk Bong Kang ◽  
Jian Min Han

Thick alumina coatings were performed on A356-20vol.% SiCp composites by micro-arc oxidation (MAO) process with different processing time. The dry sliding wear tests were performed on A356-20vol.% SiCp composites with and without surface coating. The samples were tested by pin-on-disc wear test equipment with different applied load and sliding velocity. It is revealed that MAO coating improves resistance to wear of A356-20vol.% SiCp composites in the severe wear conditions. On the basis of the observations and analysis of the worn surface, worn subsurface, wear debris and variation of friction coefficient, the role of MAO coating layer is examined.

2010 ◽  
Vol 154-155 ◽  
pp. 617-620
Author(s):  
Wei Niu ◽  
Rong Lu Sun ◽  
Yi Wen Lei

Self-lubricating h-BN/Ni coating was prepared on a medium carbon steel substrate by CO2 laser cladding using a powder mixture of NiCrBSi+5%h-BN(wt.%). Microstructures and phase structure of the coating were analyzed using SEM, EDS and XRD. Wear tests were carried out using a M100 pin-on-ring wear tester. The results show that h-BN/Ni coating has much superior war resistance and noticeably lower fiction coefficient under dry sliding wear test conditions.


2019 ◽  
Vol 969 ◽  
pp. 392-397 ◽  
Author(s):  
S. Ramesh ◽  
H. Shivananda Nayaka

Copper-Titanium alloy was subjected to multi axial forging (MAF) at cryogenic temperature. Microstructure evolution was observed using optical microscope (OM). After 9 pass of MAF, grain size reduced to 2 µm. As number of MAF pass increases, hardness of the sample increased, due to strain hardening effect. Dry sliding wear test was performed on as-received and MAF processed samples using pin on disc wear machine. Tests were performed at 30 N and 40 N loads at 3 m/s constant speed and at 1000 m and 2000 m, sliding distance. Scanning Electron Microscope (SEM) and EDS was used to analyze the worn-out surface of the specimen. Wear mass loss of MAF processed sample reduced, with increased number of MAF passes. Frictional Coefficient (COF) reduced with increase in MAF passes and improved with increase in load, because of increase in contact area between sample and disc.


2012 ◽  
Vol 445 ◽  
pp. 673-678
Author(s):  
Bijan Abbasi Khazaei

In this research wear mechanism of ADI under different intensity of loading with different hardness have been investigated. To study of wear behavior, a series of austempered specimens with optimum mechanical properties were used for wear tests. Dry sliding wear tests were carried out in pin-on-ring wear tester machine at speed of 0.5 ms-1 and loaded with normal loads of 100,200,300 and 400 N. Scanning electron microscopy for microstructure and wear surface analysis was used. To determine the austenite volume fraction and the percentage of carbon content in austenite, X-ray diffraction analysis was used. Results show that the role of retained austenite at wear properties of ADI is dependent on loading intensity and austenite carbon content.


2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5153-5164
Author(s):  
Meng Su ◽  
Lei Liang ◽  
Fang Ren ◽  
Weigang Yao ◽  
Mingming Yu ◽  
...  

Hybrid polyimide (PI)-polytetrafluoroethylene (PTFE)/Nomex fabric composites and Nomex-PTFE/Nomex fabric composites were prepared with benzoxazine (BOZ) as the resin binder. The tribological properties and wear mechanisms of the two composites at different temperatures were investigated using a ball-on-disk wear tester. Before sliding wear tests, a thermo-aging test, thermogravimetric analysis and dynamic mechanical analysis of PI and Nomex fibers were performed to evaluate the thermal properties of the two reinforcing fibers. After each wear test, scanning electron microscopy was employed to analyze the morphologies of the worn surfaces of the composite. The results of sliding wear tests show that the difference between the tribological properties of the two composites is small at room temperature. However, the hybrid PI-PTFE/Nomex fabric composite achieves better tribological properties at high temperatures compared with the hybrid Nomex-PTFE/Nomex fabric composite, which suffered wear failure at 240℃. It is proposed that the excellent thermal mechanical property and thermal stability of PI fibers is the main factor that endows the PI-PTFE/Nomex/BOZ composite with a more favorable tribological property at high temperatures. Moreover, the influence of the increasing temperature on the tribological properties of the two composites was also investigated.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2019 ◽  
Vol 9 (5) ◽  
pp. 567-572
Author(s):  
Li Hui ◽  
Jiao Lei ◽  
Miao Chang ◽  
Zhong Wu ◽  
Zhang Xiong ◽  
...  

The AZ91D composites reinforced by 10 wt.% AlN particles were welded via plasma welding and the dry sliding wear properties of the composites were investigated. The influence of welding current, welding speed and plasma flow rate were studied in detail. By using of OM, XRD, EDS and SEM, the crystalline phase, the microstructure and the wear properties were investigated. The experiment result shows that the AlN reinforcing particles is in the shape of strip and have a fine size under the condition of the welding speed 400 mm/min, the welding current 180 A and the plasma flow 2.0 L/min, which reaches 20–30 μm. The matrix grain in the composite were obviously refined, which reaches 60–70 μm. Wear test results showed that the wear rate of welding seam compared base metal decreased by 25%.


An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mokgadi Nomsa Mokgalaka ◽  
Sisa Lesley Pityana ◽  
Patricia Abimbola Idowu Popoola ◽  
Tebogo Mathebula

The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental powder mixtures. The effect of varying the Ti content in the NiTi composition on the microstructure and wear properties of the coatings was investigated. The microstructure of the NiTi intermetallic coatings were characterized by the scanning electron microscope (SEM) equipped with Energy Dispersive Spectroscope (EDS). The wear properties of the coatings were performed under accelerated dry sliding wear tests. The results obtained from the SEM/EDS analysis; show that the coatings consist of Ni and Ti elements from the feedstock, and the NiTi, NiTi2and NiTi3, intermetallic phases. Dry sliding wear analysis revealed that there is correlation between the hardness and the wear rate. The coatings displayed significant improvement in wear resistance up to 80% compared to the substrate.


2013 ◽  
Vol 721 ◽  
pp. 303-307
Author(s):  
Hong Xu ◽  
Yi Chao Ding ◽  
Jing Wang

(Ti,V)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure and wear properties were investigated by scanning electron microscopy and dry sliding wear test. The results show that fine (Ti,V)C particulates distribute uniformly in pearlite matrix; when V/Ti atomic ratio is 0.4, the wear weight loss of the composites achieve minimum.


Sign in / Sign up

Export Citation Format

Share Document