Reinforcement of cement mortar with recycled polyethylene waste for construction applications

2021 ◽  
pp. 002199832110002
Author(s):  
Moses K Flomo ◽  
Salifu T Azeko ◽  
Emmanuel K Arthur ◽  
Jamal-Deen Kukurah ◽  
Kabiru Mustapha ◽  
...  

This current research work combines both experimental and theoretical study of the impact of cement mortar reinforced with recycled polyethylene waste for applications in the construction industry. The work explores incorporating low density polyethylene (LDPE) waste into cement mortar to improve its fracture toughness and flexural strength with balanced compressive strength. Different volume fractions (0, 5, 10, 15, 20, 30, and 40%) of the powdered LDPE were mixed with cement and the density, compressive strength, flexural strength, and the fracture toughness were observed under different testing conditions. All specimens were tested after curing of 7, 14, and 28 days. The results show that there was [Formula: see text]6% increase in the fracture toughness at 5 vol. %, [Formula: see text]7% increase at 10 vol. %, and 24% increases at 20 vol. % of LDPE. Also, it was observed that the weight and compressive strength decreased with increasing volume fraction up to 40 vol. % of LDPE waste. The results for the survival/failure probability show that the PE-mortar composites with PE volume percentages up to 20 vol. % had the highest survival probability. The composite with this volume percentage can withstand crack up to 6 mm, with a survival probability of 0.6.

2010 ◽  
Vol 150-151 ◽  
pp. 779-782
Author(s):  
Qing Xin Zhao ◽  
Zhao Yang Liu ◽  
Jin Rui Zhang ◽  
Ran Ran Zhao

By means of the three-point bending impact equipment, with the measurement of ultrasonic velocity, the impact behavior and damage evolution of reactive powder concrete (RPC) with 0, 1%, 2% and 3% volume fraction of steel fiber were tested. The results showed that steel fiber significantly improved the compressive strength, flexural strength, flexural toughness and impact toughness of RPC matrix. The compressive strength, flexural strength, flexural toughness of RPC with 3% steel fiber increased by 40.1%, 102.1%, and 37.4 times than that of plain concrete, respectively, and simultaneously, the impact toughness of RPC with 3% steel fiber was 93.2 times higher than that with 1% steel fiber. RPC with 2% and 3% steel fiber dosage both had relatively high compressive strength, flexural strength and flexural toughness; however, compared with the sample with 2% steel fiber dosage, the impact toughness of RPC with 3% steel fiber dosage increased by more than 10 times. Therefore, taking economy and applicability into consideration, if we mainly emphasis on the compressive strength, flexural strength and flexural toughness, RPC with 2% steel fiber is optimal. While if impact toughness is critical, RPC with 3% steel fiber would be the best choice.


2021 ◽  
Author(s):  
Gude Reddy Babu ◽  
Pala Gireesh Kumar ◽  
Nelluru Venkata Ramana ◽  
Bhumireddy Madhusudana Reddy

The present examination illustrates the impact on the hardened and fresh cement mortar and cement with the inclusion of nanosilica of size 40 nm in various environmental conditions (UltraTech, India). It is quite notified that an elevation in compressive strength as well as flexural strength along with an improvisation in the performance and life span of cement mortar. The samples of M5 grade blended with a ninety percentage of concrete and remaining with nanosilica was identified to have a finer working elevation in as well as in standards when collated with the conventional cement mortar. The corollary of hardened and fresh cement, strength parameters were looked upon with the aid of XRD (X-ray Diffraction). Also, the SEM (Scanning Electron Microscope) test holds a predominant role in analysis.


2011 ◽  
Vol 374-377 ◽  
pp. 1499-1506
Author(s):  
Rong Hui Zhang ◽  
Jian Li

In this study, the effect of micro-expansion high strength grouting material (EGM) and Modified polypropylene coarse fiber (M-PP fiber) on the mechanical properties of lightweight concrete are investigated. The influence of EGM and M-PP fiber on compressive strength , flexural strength and drying shrinkage of concrete are researched, and flexural fracture toughness are calculated. Test results show that the effect of EGM and M-PP fiber volume fraction (Vf) on flexural strength and fracture toughness is extremely prominent, compressive strength is only slightly enhanced, and the rate of shrinkage is obviously decreased. It is observed that the shape of the descending branch of load-deflection and the ascending branch of shrinkage-age tends towards gently with the increase of Vf. And M-PP fiber reinforced lightweight aggregate concrete is more economical.


2021 ◽  
Vol 879 ◽  
pp. 13-21
Author(s):  
M.M.H. Shamsudin ◽  
N.H. Hamid ◽  
M.A. Mohd Fauzi

This paper presents the feasibility study of adding recycled Polyethylene Terephthalate (PET) fiber obtained from drinking water bottle as admixture material in the concrete. A few numbers of tests were conducted to determine the physical and mechanical properties of recycled PET fiber reinforced concrete such as slump test, compressive strength test and flexural strength test. The effect of incorporating the recycled PET fiber on various volume fractions of concrete by 0.5%, 1%, and 1.5% of weight of cement were experimentally investigated. The test specimens comprising of cubes and beams were prepared and tested at 3, 7, 14 and 28 days after curing process completed. Generally, it was found that the workability of concrete reinforced recycled PET has reduced as the volume fraction of PET fiber increased. The compressive strength of concrete reinforced recycled PET has reached the highest value at volume fraction of 0.5%. However, the flexural strength of concrete was significantly increased by incorporating 1.0% of recycled PET fiber. It can be concluded that the concrete which contains 0.5% of recycled PET fiber has the highest of average percentage of relative. Hence, it can be categorized as the optimum percentage of recycled PET fiber to be utilized in concrete. It is recommended to use recycled PET fiber in concrete for the construction of structures and infrastructures as a green construction material in order to achieve clean and sustainable environment in the year future.


2011 ◽  
Vol 306-307 ◽  
pp. 758-761
Author(s):  
Shui Zhang ◽  
Guo Zhong Li ◽  
Hai Yan Yuan

This work aims to evaluate the effect of Kevlar fibers with chemical treatment on the flexural strength, compressive strength and impact resistance of cement mortar. The experimental results exhibit that Kevlar fiber with a larger percentage can increase the flexural strength and improve the impact resistance of cement mortar, and the reinforcement effect of Kevlar fiber with chemical treatment is more obvious. The surface morphology of Kevlar fiber and the fracture surface of cement mortar reinforced with Kevlar fiber were observed by SEM, and the reinforcement mechanism of the Kevlar fiber on cement mortar was discussed.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


2013 ◽  
Vol 795 ◽  
pp. 684-691 ◽  
Author(s):  
Wail N. Al-Rifaie ◽  
Omar Mohanad Mahdi ◽  
Waleed Khalil Ahmed

The present research examined the compressive and flexural strength of nanocement mortar by using micro cement, micro sand, nanosilica and nanoclay in developing a nanocement mortar which can lead to improvements in ferrocement construction. The measured results demonstrate the increase in compressive and flexural strength of mortars at early stages of hardening. In addition, the influence of heating on compressive strength of cement mortar. General expressions to predict the compressive strength, modulus of rupture for the developed nanocement mortar in the present work are proposed.


2014 ◽  
Vol 894 ◽  
pp. 55-59
Author(s):  
Abdoullah Namdar ◽  
Fadzil Mat Yahaya ◽  
Kok Jun Jie ◽  
Lim Yen Ping

One of waste agriculture materials is oil palm shell ash. It has been producing in high quantity in palm oil mill, and for storage of that an investment requires. In this paper, an attempt has been made to analysis effect of oil palm shell ash on compressive and flexural strength of cement mortar. The compressive strength and flexural strength of cement mortar has been measured. To improve accuracy of work 50% cement and 50% fine sand has been proposed in cement mortar mix design. The results have been indicated that the effect of OPS ash on flexural and compressive strength of cement mortar is not same. The deflection, load sustainability and time to failure for compressive strength have independent fluctuation of flexural strength. The positive and negative effect of OPS ash on mechanical properties of cement mortar has been observed. The morphology of crack failure has not been investigated. The work can be continued with many waste agriculture materials. Keywords: waste agriculture, deflection, load sustainability, time to failure.


Sign in / Sign up

Export Citation Format

Share Document