Ral GTPase Activation by Downregulation of RalGAP Enhances Oral Squamous Cell Carcinoma Progression

2019 ◽  
Vol 98 (9) ◽  
pp. 1011-1019 ◽  
Author(s):  
P. Gao ◽  
S. Liu ◽  
R. Yoshida ◽  
C.Y. Shi ◽  
S. Yoshimachi ◽  
...  

Ral small GTPases, consisting of RalA and RalB, are members of the Ras family. Their activity is upregulated by RalGEFs. Since several RalGEFs are downstream effectors of Ras, Ral is activated by the oncogenic mutant Ras. Ral is negatively regulated by RalGAP complexes that consist of a catalytic α1 or α2 subunit and its common partner β subunit and similarly regulate the activity of RalA as well as RalB in vitro. Ral plays an important role in the formation and progression of pancreatic and lung cancers. However, the involvement of Ral in oral squamous cell carcinoma (OSCC) is unclear. In this study, we investigated OSCC by focusing on Ral. OSCC cell lines with high Ral activation exhibited higher motility. We showed that knockdown of RalGAPβ increased the activation level of RalA and promoted the migration and invasion of HSC-2 OSCC cells in vitro. In contrast, overexpression of wild-type RalGAPα2 in TSU OSCC cells attenuated the activation level of RalA and inhibited cell migration and invasion. Real-time quantitative polymerase chain reaction analysis of samples from patients with OSCC showed that RalGAPα2 was downregulated in oral cancer tissues as compared with normal epithelia. Among patients with OSCC, those with a lower expression of RalGAPα2 showed a worse overall survival rate. A comparison of DNA methylation and histone modifications of the RalGAPα2 gene in OSCC cell lines suggested that crosstalk among DNA methylation, histone H4Ac, and H3K27me2 was involved in the downregulation of RalGAPα2. Thus, activation of Ral GTPase by downregulation of RalGAP expression via a potential epigenetic mechanism may enhance OSCC progression.

2019 ◽  
Vol 19 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Ling Gao ◽  
Jianwei Dong ◽  
Nanyang Zhang ◽  
Zhanxian Le ◽  
Wenhao Ren ◽  
...  

Background:The Oral Squamous Cell Carcinoma (OSCC) is one of the most frequent cancer types. Failure of treatment of OSCC is potentially lethal because of local recurrence, regional lymph node metastasis, and distant metastasis. Chemotherapy plays a vital role through suppression of tumorigenesis. Cyclosporine A (CsA), an immunosuppressant drug, has been efficiently used in allograft organ transplant recipients to prevent rejection, and also has been used in a subset of patients with autoimmunity related disorders. The present study aims to investigate novel and effective chemotherapeutic drugs to overcome drug-resistance in the treatment of OSCC.Methods:Cells were incubated in the standard way. Cell viability was assayed using the MTT assay. Cell proliferation was determined using colony formation assay. The cell cycle assay was performed using flow cytometry. Apoptosis was assessed using fluorescence-activated cell sorting after stained by the Annexin V-fluorescein isothiocyanate (FITC). Cell migration and invasion were analyzed using wound healing assay and tranwell. The effect of COX-2, c-Myc, MMP-9, MMP-2, and NFATc1 protein expression was determined using Western blot analysis while NFATc1 mRNA expression was determined by RT-PCR.Results:In vitro studies indicated that CsA inhibited partial OSCC growth by inducing cell cycle arrest, apoptosis, and the migration and invasion of OSCC cells. We also demonstrated that CsA could inhibit the expression of NFATc1 and its downstream genes COX-2, c-Myc, MMP-9, and MMP-2 in OSCC cells. Furthermore, we analyzed the expression of NFATc1 in head and neck cancer through the Oncomine database. The data was consistent with the experimental findings.Conclusion:The present study initially demonstrated that CsA could inhibit the progression of OSCC cells and can mediate the signal molecules of NFATc1 signaling pathway, which has strong relationship with cancer development. That explains us CsA has potential to explore the possibilities as a novel chemotherapeutic drug for the treatment of OSCC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wen Chen ◽  
Chenzhou Wu ◽  
Yafei Chen ◽  
Yuhao Guo ◽  
Ling Qiu ◽  
...  

AbstractC18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonio Celentano ◽  
Callisthenis Yiannis ◽  
Rita Paolini ◽  
Pangzhen Zhang ◽  
Camile S. Farah ◽  
...  

Abstract Kava is a beverage made from the ground roots of the plant Piper Methysticum. Active compounds of Kava have previously been demonstrated to exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. Our aim was to investigate the in vitro effects of the main constituents derived from Kava on oral squamous cell carcinoma (OSCC) activity. Gas chromatography mass spectrometry (GCMS) was used to characterise the main constituents of two Kava preparations. Cell proliferation was assessed in two human OSCC cell lines (H400 and BICR56) and in normal oral keratinocytes (OKF6) treated with the identified Kava constituents, namely Flavokawain A (FKA), Flavokawain B (FKB), yangonin, kavain and methysticin using an MTS in vitro assay. Cell migration at 16 h was assessed using a Transwell migration assay. Cell invasion was measured at 22 h using a Matrigel assay. Cell adhesion was assessed at 90 min with a Cytoselect Adhesion assay. The two Kava preparations contained substantially different concentrations of the main chemical constituents. Treatment of malignant and normal oral keratinocyte cell lines with three of the identified constituents, 10 μg/ml FKA, 2.5 μg/ml FKB and 10 μg/ml yangonin, showed a significant reduction in cell proliferation in both H400 and BICR56 cancer cell lines but not in normal OKF6 cells. Remarkably, the same Kava constituents induced a significant reduction of OSCC cell migration and invasion. We have demonstrated, for the first time, that Kava constituents, FKA, FKB and yangonin have potential anticancer effects on OSCC. This highlights an avenue for further research of Kava constituents in the development of future cancer therapies to prevent and treat OSCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhui Zhang ◽  
Aifang Wang ◽  
Xiaohe Zhang ◽  
Xiaoliang Wang ◽  
Jin Zhang ◽  
...  

Objective. Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the head and neck, with strong local invasiveness and cervical lymph node metastasis. The purpose of this study was to investigate the role of LINC01296 in oral squamous cell carcinoma and its possible mechanism. Materials and Methods. GEPAI database analysis and clinical samples were used to detect the expression of LINC01296 in head and neck cancer. In vivo experiment, MTT, clone formation assay, and transwell were used to detect the proliferation, migration, and invasion of oral squamous cell carcinoma. The effect of LINC01296 on EMT was detected by western blot and qRT-PCR to measure the expression of epithelial and mesenchymal phenotypic markers. BALB/c nude mice were used to carry out in vitro treatment experiment. In terms of mechanism, the binding relationship between LINC01296 and SRSF1 was predicted and verified by the RBPDB database and RNA pull-down assay. Results. LINC01296 was highly expressed in clinical samples and cell lines of oral squamous cell carcinoma. Overexpression of LINC01296 promoted the proliferation, invasion, and migration of oral squamous cell carcinoma cells and accelerated the formation of xenografts, while silencing LINC01296 inhibited tumor progression. In mechanism, LINC01296 plays a tumor-promoting role by binding to SRSF1 protein. Conclusion. LINC01296 promotes malignant lesions in oral squamous cell carcinoma by binding to SRSF1 protein, which provides important experimental data and theoretical basis for the prevention, diagnosis, and treatment of oral squamous cell carcinoma.


2020 ◽  
Author(s):  
Kyoung-Ok Hong ◽  
Kyu-Young Oh ◽  
Hye-Jung Yoon ◽  
Neeti Swarup ◽  
Minjung Jung ◽  
...  

Abstract Background : Vasculogenic mimicry (VM) is the formation of an alternative circulatory system by aggressive tumor cells. The characteristics of VM and its underlying mechanism in oral squamous cell carcinoma (OSCC) remain unclear. This study aims to determine the relationship between VM channels in OSCC tissues and clinical outcomes and to investigate the biological role of SOX7 in VM in OSCC cells. Methods : CD31/PAS double staining was performed to evaluate VM status in OSCC tissue. The relationships between VM and clinicopathological variables, and VM and SOX7 levels were analyzed. VM channel formation was assay performed to observe VM channels in the OSCC cell lines. To investigate the role of SOX7 in VM channel formation, SOX7 was transiently over-expressed in SCC-9 cells. VM-modulating genes were identified by Western blotting. Results : We confirmed the presence of VM channels in OSCC tissue and several cell lines and found a positive correlation between VM and lymph node metastasis and patient survival in OSCC ( P = 0.003). We also found that the presence of VM channels in OSCC tissue was inversely associated with SOX7 expression ( P = 0.020). We observed that overexpression of SOX7 impaired VM channel formation by reducing the expression of VE-cadherin, thereby inhibiting cell migration and invasion. Conclusion : These results suggest that SOX7 plays an important role in the regulation of VM channel formation and may inhibit OSCC metastasis.


2019 ◽  
Vol 133 (5) ◽  
pp. 681-695 ◽  
Author(s):  
Zhiyuan Lu ◽  
Jianfeng Liang ◽  
Qianting He ◽  
Quan Wan ◽  
Jinsong Hou ◽  
...  

AbstractChemerin, which is encoded by retinoic acid receptor responder 2 (RARRES2), has been found to be related to malignant tumours, but its role in the development of oral squamous cell carcinoma (OSCC) is largely unexplored. In the present study, a higher serum level of chemerin was evident in patients with OSCC than in healthy individuals, and this high level of chemerin significantly decreased after tumour resection. In addition, high chemerin levels were positively associated with advanced tumour stage and lymph node metastasis. The expression levels of chemerin and Chemerin Receptor 23 (ChemR23) were positively correlated with the migration and invasion of OSCC cell lines. Recombinant chemerin (R-chemerin) enhanced the in vitro migration, invasion and proliferation of OSCC cells in a concentration-dependent manner, and short hairpin RNAs (shRNAs) targeting RARRES2 decreased chemerin expression and inhibited OSCC cell metastasis and proliferation both in vitro and in vivo. Additionally, R-chemerin activated manganese superoxide dismutase (SOD2) and increased the amount of intracellular hydrogen peroxide (H2O2), leading to a significant decrease in E-cadherin expression and dramatic increase in the expression of phosphorylated ERK1/2 (p-ERK1/2), Slug, Vimentin and N-cadherin, but shRNAs targeting RARRES2 reversed these effects. Moreover, knockdown of ChemR23 with small interfering RNAs (siRNA) significantly inhibited chemerin-induced OSCC cell migration/invasion and SOD2 activity. Our results revealed that chemerin is a novel biomarker for OSCC. Chemerin/ChemR23 promotes tumorigenesis and metastasis in OSCC and may be a new therapeutic target for OSCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Long Li ◽  
Hai-Chao Liu ◽  
Cheng Wang ◽  
Xiqiang Liu ◽  
Feng-Chun Hu ◽  
...  

Abnormal expression ofβ-catenin contributes to tumor development, progression, and metastasis in various cancers. However, little is known about the relationship between abnormal expression ofβ-catenin and cisplatin chemotherapy in oral squamous cell carcinoma (OSCC). The present study aimed to investigate the effect ofβ-catenin on OSCC cisplatin resistance and evaluated the drug susceptibility of stable cell lines withβ-catenin knockin and knockdown. In this study, we found that higher expression level ofβ-catenin can be observed in CDDP-treated cell lines as compared with the control group. Furthermore, the expression levels ofβ-catenin increased in both a concentration- and time-dependent manner with the cisplatin treatment. More importantly, the nuclear translocation ofβ-catenin could also be observed by confocal microscope analysis. Stable cell lines with CTNNB1 knockin and knockdown were established to further investigate the potential role and mechanism ofβ-catenin in the chemoresistance of OSCC in vitro and in vivo. Our findings indicated that overexpression ofβ-catenin promoted cisplatin resistance in OSCC in vitro and in vivo. We confirmed that GSK-3β, C-myc, Bcl-2, P-gp, and MRP-1 were involved inβ-catenin-mediated drug resistance. Our findings indicate that the Wnt/β-catenin signaling pathway may play important roles in cisplatin resistance in OSCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hongze Che ◽  
Yanhai Che ◽  
Zhimin Zhang ◽  
Qing Lu

Recently, additional long noncoding RNAs (lncRNAs) have been identified and their possible roles were investigated in a variety of human tumors. One of these lncRNAs, LINC01929, promoted the progression of some cancers, whereas its expression and biological function in human oral squamous cell carcinoma (OSCC) remains still mostly uncertain. The LINC01929 expression in OSCC tissues or cell lines was identified via quantitative real-time polymerase chain reaction. The cell counting kit-8, transwell migration, wound-healing, and flow cytometry assays were utilized to characterize the functions of LINC01929 in OSCC cells. The interactive relationships between LINC01929 and miR-137-3p, miR-137-3p and Forkhead box C1 (FOXC1) were investigated by the dual-luciferase activity assay. Our findings demonstrated that LINC01929 was highly expressed in OSCC tissue samples and cell lines, whereas miR-137-3p expression was downregulated. LINC01929 acted as a carcinogenic lncRNA with accelerated OSCC cell proliferation, migration and invasion, and suppression of apoptosis. We further indicated that LINC01929 facilitated tumor growth in xenograft mouse models. Mechanistically, LINC01929 acted as a sponge for miR-137-3p to elevate FOXC1 expression, which is the target of miR-137-3p. In addition, downregulated miR-137-3p expression rescued the suppressive behaviors of LINC01929 knockdown on the biological behaviors of OSCC cells. Taken together, LINC01929 functioned as a tumor-promoting lncRNA via the miR-137-3p/FOXC1 axis in OSCC, suggesting novel targets for OSCC therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Tong Wang ◽  
Yipeng Ren ◽  
Ruixun Liu ◽  
Juntao Ma ◽  
Yueyi Shi ◽  
...  

MicroRNAs (miRNAs) play an essential role in tumor biological processes through interacting with specific gene targets. The involvement of miR-195-5p in cell proliferation, invasion, and migration has been demonstrated in several cancer cell lines, while its function in oral squamous cell carcinoma (OSCC) remains unclear. Here we find that miR-195-5p expression is lower in OSCC than in nontumor tissues, while its overexpression in cell lines can lead to the promotion of apoptosis and the reduction of cell growth, migration, and invasion. Moreover, we identify the tripartite motif-containing protein (TRIM14) as a target of miR-195-5p. Therefore, we reason that the tumor suppressor role of miR-195-5p in OSCC is dependent on the interaction with TRIM14.


2016 ◽  
Vol 38 (6) ◽  
pp. 2426-2437 ◽  
Author(s):  
Wei Zhang ◽  
Yuan Liu ◽  
Yu Feng Li ◽  
Yun Yue ◽  
Xinghua Yang ◽  
...  

Background/Aims: Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first “Survivin suppressant” but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. Methods: SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-κB. Results: YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-κB and downregulation of NF-κB downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. Conclusions: YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed OSCC.


Sign in / Sign up

Export Citation Format

Share Document